Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 297, Pages 281–291
DOI: https://doi.org/10.1134/S0371968517020157
(Mi tm3796)
 

A note on the shrinking sector problem for surfaces of variable negative curvature

Mark Pollicott

Department of Mathematics, University of Warwick, Coventry CV4 7AL, UK
References:
Abstract: Given the universal cover $\widetilde V$ for a compact surface $V$ of variable negative curvature and a point $\widetilde x_0\in\widetilde V$, we consider the set of directions $\widetilde v\in S_{\widetilde x_0}\widetilde V$ for which a narrow sector in the direction $\widetilde v$, and chosen to have unit area, contains exactly $k$ points from the orbit of the covering group. We can consider the size of the set of such $\widetilde v$ in terms of the induced measure on $S_{\widetilde x_0}\widetilde V$ by any Gibbs measure for the geodesic flow. We show that for each $k$ the size of such sets converges as the sector grows narrower and describe these limiting values. The proof involves recasting a similar result by Marklof and Vinogradov, for the particular case of surfaces of constant curvature and the volume measure, by using the strong mixing property for the geodesic flow, relative to the Gibbs measure.
Received: May 17, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 297, Pages 254–263
DOI: https://doi.org/10.1134/S0081543817040150
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: Mark Pollicott, “A note on the shrinking sector problem for surfaces of variable negative curvature”, Order and chaos in dynamical systems, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov, Trudy Mat. Inst. Steklova, 297, MAIK Nauka/Interperiodica, Moscow, 2017, 281–291; Proc. Steklov Inst. Math., 297 (2017), 254–263
Citation in format AMSBIB
\Bibitem{Pol17}
\by Mark~Pollicott
\paper A note on the shrinking sector problem for surfaces of variable negative curvature
\inbook Order and chaos in dynamical systems
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 297
\pages 281--291
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3796}
\crossref{https://doi.org/10.1134/S0371968517020157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3695418}
\elib{https://elibrary.ru/item.asp?id=29859501}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 297
\pages 254--263
\crossref{https://doi.org/10.1134/S0081543817040150}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410199700015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029148606}
Linking options:
  • https://www.mathnet.ru/eng/tm3796
  • https://doi.org/10.1134/S0371968517020157
  • https://www.mathnet.ru/eng/tm/v297/p281
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :27
    References:33
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024