Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 297, Pages 292–312
DOI: https://doi.org/10.1134/S0371968517020169
(Mi tm3801)
 

Splitting problem for WKB asymptotics in a nonresonant case and the reduction method for linear systems

S. A. Stepin

Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
References:
Abstract: As applied to the problem of asymptotic integration of linear systems of ordinary differential equations, we propose a reduction of order method that allows one to effectively construct solutions indistinguishable in the growth/decrease rate at infinity. In the case of a third-order equation, we use the developed approach to answer Bellman's problem on splitting WKB asymptotics of subdominant solutions that decrease at the same rate. For a family of Wigner–von Neumann type potentials, the method allows one to formulate a selection rule for nonresonance values of the parameters (for which the corresponding second-order equation has a Jost solution).
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00117-а
This work was supported by the Russian Foundation for Basic Research, project no. 16-01-00117-a.
Received: September 15, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 297, Pages 264–284
DOI: https://doi.org/10.1134/S0081543817040162
Bibliographic databases:
Document Type: Article
UDC: 517.928.1
Language: Russian
Citation: S. A. Stepin, “Splitting problem for WKB asymptotics in a nonresonant case and the reduction method for linear systems”, Order and chaos in dynamical systems, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov, Trudy Mat. Inst. Steklova, 297, MAIK Nauka/Interperiodica, Moscow, 2017, 292–312; Proc. Steklov Inst. Math., 297 (2017), 264–284
Citation in format AMSBIB
\Bibitem{Ste17}
\by S.~A.~Stepin
\paper Splitting problem for WKB asymptotics in a~nonresonant case and the reduction method for linear systems
\inbook Order and chaos in dynamical systems
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 297
\pages 292--312
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3801}
\crossref{https://doi.org/10.1134/S0371968517020169}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559185}
\elib{https://elibrary.ru/item.asp?id=29859502}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 297
\pages 264--284
\crossref{https://doi.org/10.1134/S0081543817040162}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410199700016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029153305}
Linking options:
  • https://www.mathnet.ru/eng/tm3801
  • https://doi.org/10.1134/S0371968517020169
  • https://www.mathnet.ru/eng/tm/v297/p292
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :35
    References:37
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024