|
This article is cited in 19 scientific papers (total in 19 papers)
Quotient and product sets of thin subsets of the positive integers
J. Cillerueloab, D. S. Ramanac, O. Ramaréd a Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), 28049 Madrid, Spain
b Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
c Harish-Chandra Research Institute, Jhunsi, Allahabad 211 019, India
d CNRS/ Institut de Mathématiques de Marseille, Aix Marseille Université, UMR 7373, Site Sud, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France
Abstract:
We study the cardinalities of $A/A$ and $AA$ for thin subsets $A$ of the set of the first $n$ positive integers. In particular, we consider the typical size of these quantities for random sets $A$ of zero density and compare them with the sizes of $A/A$ and $AA$ for subsets of the shifted primes and the set of sums of two integral squares.
Received: May 25, 2016
Citation:
J. Cilleruelo, D. S. Ramana, O. Ramaré, “Quotient and product sets of thin subsets of the positive integers”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 58–71; Proc. Steklov Inst. Math., 296 (2017), 52–64
Linking options:
https://www.mathnet.ru/eng/tm3791https://doi.org/10.1134/S0371968517010058 https://www.mathnet.ru/eng/tm/v296/p58
|
|