Abstract:
We study the cardinalities of A/A and AA for thin subsets A of the set of the first n positive integers. In particular, we consider the typical size of these quantities for random sets A of zero density and compare them with the sizes of A/A and AA for subsets of the shifted primes and the set of sums of two integral squares.
Citation:
J. Cilleruelo, D. S. Ramana, O. Ramaré, “Quotient and product sets of thin subsets of the positive integers”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 58–71; Proc. Steklov Inst. Math., 296 (2017), 52–64
\Bibitem{CilRamRam17}
\by J.~Cilleruelo, D.~S.~Ramana, O.~Ramar\'e
\paper Quotient and product sets of thin subsets of the positive integers
\inbook Analytic and combinatorial number theory
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 296
\pages 58--71
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3791}
\crossref{https://doi.org/10.1134/S0371968517010058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3640773}
\elib{https://elibrary.ru/item.asp?id=28905721}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 296
\pages 52--64
\crossref{https://doi.org/10.1134/S0081543817010059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400278600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017968384}