|
This article is cited in 5 scientific papers (total in 5 papers)
On the zeros of the Davenport–Heilbronn function
S. A. Gritsenkoab a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Bauman Moscow State Technical University
Abstract:
Let $N_0(T)$ be the number of zeros of the Davenport–Heilbronn function in the interval $[1/2,1/2+iT]$. It is proved that $N_0(T)\gg T(\ln T)^{1/2+1/16-\varepsilon }$, where $\varepsilon $ is an arbitrarily small positive number.
Received: May 15, 2016
Citation:
S. A. Gritsenko, “On the zeros of the Davenport–Heilbronn function”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 72–94; Proc. Steklov Inst. Math., 296 (2017), 65–87
Linking options:
https://www.mathnet.ru/eng/tm3766https://doi.org/10.1134/S037196851701006X https://www.mathnet.ru/eng/tm/v296/p72
|
Statistics & downloads: |
Abstract page: | 318 | Full-text PDF : | 49 | References: | 51 | First page: | 14 |
|