Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 296, Pages 123–132
DOI: https://doi.org/10.1134/S0371968517010095
(Mi tm3780)
 

This article is cited in 1 scientific paper (total in 1 paper)

A note on Linnik's approach to the Dirichlet $L$-functions

J. Kaczorowskiab, A. Perellic

a Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
b Institute of Mathematics of the Polish Academy of Sciences, Warsaw, Poland
c Dipartimento di Matematica, Universitá di Genova, Genova, Italy
Full-text PDF (211 kB) Citations (1)
References:
Abstract: Let $\chi \pmod q$, $q>1$, be a primitive Dirichlet character. We first present a detailed account of Linnik's deduction of the functional equation of $L(s,\chi )$ from the functional equation of $\zeta (s)$. Then we show that the opposite deduction can be obtained by a suitable modification of the method, involving finer arithmetic arguments.
Funding agency Grant number
Istituto Nazionale di Alta Matematica "Francesco Severi"
Ministero dell'Istruzione, dell'Università e della Ricerca PRIN2015
National Science Centre (Narodowe Centrum Nauki) 2013/11/B/ST1/02799
This research was partially supported by Istituto Nazionale di Alta Matematica, by grant PRIN2015 Number Theory and Arithmetic Geometry and by grant no. 2013/11/B/ST1/02799 Analytic Methods in Arithmetic of the National Science Centre.
Received: May 2, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 296, Pages 115–124
DOI: https://doi.org/10.1134/S0081543817010096
Bibliographic databases:
Document Type: Article
UDC: 511.331
Language: Russian
Citation: J. Kaczorowski, A. Perelli, “A note on Linnik's approach to the Dirichlet $L$-functions”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 123–132; Proc. Steklov Inst. Math., 296 (2017), 115–124
Citation in format AMSBIB
\Bibitem{KacPer17}
\by J.~Kaczorowski, A.~Perelli
\paper A note on Linnik's approach to the Dirichlet $L$-functions
\inbook Analytic and combinatorial number theory
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 296
\pages 123--132
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3780}
\crossref{https://doi.org/10.1134/S0371968517010095}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3640777}
\elib{https://elibrary.ru/item.asp?id=28905725}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 296
\pages 115--124
\crossref{https://doi.org/10.1134/S0081543817010096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400278600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017964492}
Linking options:
  • https://www.mathnet.ru/eng/tm3780
  • https://doi.org/10.1134/S0371968517010095
  • https://www.mathnet.ru/eng/tm/v296/p123
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :31
    References:43
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024