Abstract:
This is primarily an overview article on some results and problems involving the classical Hardy function Z(t):=ζ(1/2+it)(χ(1/2+it))−1/2Z(t):=ζ(1/2+it)(χ(1/2+it))−1/2, ζ(s)=χ(s)ζ(1−s)ζ(s)=χ(s)ζ(1−s). In particular, we discuss the first and third moments of Z(t)Z(t) (with and without shifts) and the distribution of its positive and negative values. A new result involving the distribution of its values is presented.
Citation:
A. Ivić, “Hardy's function Z(t)Z(t): Results and problems”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 111–122; Proc. Steklov Inst. Math., 296 (2017), 104–114
\Bibitem{Ivi17}
\by A.~Ivi{\'c}
\paper Hardy's function $Z(t)$: Results and problems
\inbook Analytic and combinatorial number theory
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 296
\pages 111--122
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3778}
\crossref{https://doi.org/10.1134/S0371968517010083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3640776}
\elib{https://elibrary.ru/item.asp?id=28905724}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 296
\pages 104--114
\crossref{https://doi.org/10.1134/S0081543817010084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400278600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017957963}
Linking options:
https://www.mathnet.ru/eng/tm3778
https://doi.org/10.1134/S0371968517010083
https://www.mathnet.ru/eng/tm/v296/p111
This publication is cited in the following 2 articles:
Ramdin Mawia, “On the distribution of values of Hardy's
Z-functions in short intervals, II : The q-aspect”, Moscow J. Comb. Number Th., 8:3 (2019), 229
Steven M. Gonek, Aleksandar Ivić, “On the distribution of positive and negative values of Hardy's Z-function”, Journal of Number Theory, 174 (2017), 189