Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 325–332
DOI: https://doi.org/10.1134/S0371968516020217
(Mi tm3721)
 

This article is cited in 2 scientific papers (total in 2 papers)

Geometric relations between the zeros of polynomials

Bl. Sendov

Bulgarian Academy of Sciences, Sofia, Bulgaria
Full-text PDF (170 kB) Citations (2)
References:
Abstract: We consider the classical theorem of Grace, which gives a condition for a geometric relation between two arbitrary algebraic polynomials of the same degree. This theorem is one of the basic instruments in the geometry of polynomials. In some applications of the Grace theorem, one of the two polynomials is fixed. In this case, the condition in the Grace theorem may be changed. We explore this opportunity and introduce a new notion of locus of a polynomial. Using the loci of polynomials, we may improve some theorems in the geometry of polynomials. In general, the loci of a polynomial are not easy to describe. We prove some statements concerning the properties of a point set on the extended complex plane that is a locus of a polynomial.
Funding agency Grant number
Bulgarian Science Fund FNI I 02/20
The work is supported in part by the Bulgarian Science Fund under project FNI I 02/20 “Efficient Parallel Algorithms for Large-Scale Computational Problems.”
Received: October 20, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 317–324
DOI: https://doi.org/10.1134/S0081543816040210
Bibliographic databases:
Document Type: Article
UDC: 517.535.2
Language: Russian
Citation: Bl. Sendov, “Geometric relations between the zeros of polynomials”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 325–332; Proc. Steklov Inst. Math., 293 (2016), 317–324
Citation in format AMSBIB
\Bibitem{Sen16}
\by Bl.~Sendov
\paper Geometric relations between the zeros of polynomials
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 325--332
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3721}
\crossref{https://doi.org/10.1134/S0371968516020217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628487}
\elib{https://elibrary.ru/item.asp?id=26344486}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 317--324
\crossref{https://doi.org/10.1134/S0081543816040210}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980021938}
Linking options:
  • https://www.mathnet.ru/eng/tm3721
  • https://doi.org/10.1134/S0371968516020217
  • https://www.mathnet.ru/eng/tm/v293/p325
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024