Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 296–324
DOI: https://doi.org/10.1134/S0371968516020205
(Mi tm3720)
 

This article is cited in 11 scientific papers (total in 11 papers)

Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces

I. V. Sadovnichaya

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119991 Russia
References:
Abstract: The problem of equiconvergence of spectral decompositions corresponding to the systems of root functions of two one-dimensional Dirac operators $\mathcal L_{P,U}$ and $\mathcal L_{0,U}$ with potential $P$ summable on a finite interval and Birkhoff-regular boundary conditions is analyzed. It is proved that in the case of $P\in L_\varkappa[0,\pi]$, $\varkappa\in(1,\infty]$, equiconvergence holds for every function $\mathbf f\in L_\mu[0,\pi]$, $\mu\in[1,\infty]$, in the norm of the space $L_\nu[0,\pi]$, $\nu\in[1,\infty]$, if the indices $\varkappa,\mu$, and $\nu$ satisfy the inequality $1/\varkappa+1/\mu-1/\nu\le1$ (except for the case when $\varkappa=\nu=\infty$ and $\mu=1$). In particular, in the case of a square summable potential, the uniform equiconvergence on the interval $[0,\pi]$ is proved for an arbitrary function $\mathbf f\in L_2[0,\pi]$.
Received: November 12, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 288–316
DOI: https://doi.org/10.1134/S0081543816040209
Bibliographic databases:
Document Type: Article
UDC: 517.984.52
Language: Russian
Citation: I. V. Sadovnichaya, “Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 296–324; Proc. Steklov Inst. Math., 293 (2016), 288–316
Citation in format AMSBIB
\Bibitem{Sad16}
\by I.~V.~Sadovnichaya
\paper Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 296--324
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3720}
\crossref{https://doi.org/10.1134/S0371968516020205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628486}
\elib{https://elibrary.ru/item.asp?id=26344485}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 288--316
\crossref{https://doi.org/10.1134/S0081543816040209}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980017933}
Linking options:
  • https://www.mathnet.ru/eng/tm3720
  • https://doi.org/10.1134/S0371968516020205
  • https://www.mathnet.ru/eng/tm/v293/p296
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024