Abstract:
Gonchar's theorem on the validity of Leighton's conjecture for arbitrary nondecreasing sequences of exponents of general C-fractions is extended to continued fractions of a more general form.
Citation:
V. I. Buslaev, “An analog of Gonchar's theorem for the m-point version of Leighton's conjecture”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 133–145; Proc. Steklov Inst. Math., 293 (2016), 127–139
\Bibitem{Bus16}
\by V.~I.~Buslaev
\paper An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 133--145
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3709}
\crossref{https://doi.org/10.1134/S0371968516020096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628475}
\elib{https://elibrary.ru/item.asp?id=26344474}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 127--139
\crossref{https://doi.org/10.1134/S008154381604009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200009}
\elib{https://elibrary.ru/item.asp?id=27120137}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980005545}
Linking options:
https://www.mathnet.ru/eng/tm3709
https://doi.org/10.1134/S0371968516020096
https://www.mathnet.ru/eng/tm/v293/p133
This publication is cited in the following 8 articles: