Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 133–145
DOI: https://doi.org/10.1134/S0371968516020096
(Mi tm3709)
 

This article is cited in 8 scientific papers (total in 8 papers)

An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture

V. I. Buslaev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (213 kB) Citations (8)
References:
Abstract: Gonchar's theorem on the validity of Leighton's conjecture for arbitrary nondecreasing sequences of exponents of general $C$-fractions is extended to continued fractions of a more general form.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: October 30, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 127–139
DOI: https://doi.org/10.1134/S008154381604009X
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: V. I. Buslaev, “An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 133–145; Proc. Steklov Inst. Math., 293 (2016), 127–139
Citation in format AMSBIB
\Bibitem{Bus16}
\by V.~I.~Buslaev
\paper An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 133--145
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3709}
\crossref{https://doi.org/10.1134/S0371968516020096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628475}
\elib{https://elibrary.ru/item.asp?id=26344474}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 127--139
\crossref{https://doi.org/10.1134/S008154381604009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200009}
\elib{https://elibrary.ru/item.asp?id=27120137}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980005545}
Linking options:
  • https://www.mathnet.ru/eng/tm3709
  • https://doi.org/10.1134/S0371968516020096
  • https://www.mathnet.ru/eng/tm/v293/p133
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :42
    References:46
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024