Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 113–132
DOI: https://doi.org/10.1134/S0371968516020084
(Mi tm3708)
 

This article is cited in 19 scientific papers (total in 19 papers)

An analog of Young's inequality for convolutions of functions for general Morrey-type spaces

V. I. Burenkova, T. V. Tararykovab

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b School of Mathematics, Cardiff University, Senghennydd Road, CF24 4AG Cardiff, Wales, UK
References:
Abstract: An analog of the classical Young's inequality for convolutions of functions is proved in the case of general global Morrey-type spaces. The form of this analog is different from Young's inequality for convolutions in the case of Lebesgue spaces. A separate analysis is performed for the case of periodic functions.
Funding agency Grant number
Russian Science Foundation 14-11-00443
The work of V. I. Burenkov (Sections 1–4) is supported by the Russian Science Foundation under grant 14-11-00443 and performed in Steklov Mathematical Institute of Russian Academy of Sciences. Section 5 is written by T. V. Tararykova.
Received: January 15, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 107–126
DOI: https://doi.org/10.1134/S0081543816040088
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: V. I. Burenkov, T. V. Tararykova, “An analog of Young's inequality for convolutions of functions for general Morrey-type spaces”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 113–132; Proc. Steklov Inst. Math., 293 (2016), 107–126
Citation in format AMSBIB
\Bibitem{BurTar16}
\by V.~I.~Burenkov, T.~V.~Tararykova
\paper An analog of Young's inequality for convolutions of functions for general Morrey-type spaces
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 113--132
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3708}
\crossref{https://doi.org/10.1134/S0371968516020084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628474}
\elib{https://elibrary.ru/item.asp?id=26344473}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 107--126
\crossref{https://doi.org/10.1134/S0081543816040088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200008}
\elib{https://elibrary.ru/item.asp?id=27120302}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980011762}
Linking options:
  • https://www.mathnet.ru/eng/tm3708
  • https://doi.org/10.1134/S0371968516020084
  • https://www.mathnet.ru/eng/tm/v293/p113
  • This publication is cited in the following 19 articles:
    1. V. I. Burenkov, D. J. Joseph, “Inequalities for trigonometric polynomials in periodic Morrey spaces”, Eurasian Math. J., 15:2 (2024), 92–100  mathnet  crossref
    2. O. G. Avsyankin, S. S. Ashihmin, “On the compactness of integral operators with homogeneous kernels in local Morrey spaces”, Math. Notes, 116:3 (2024), 397–407  mathnet  crossref  crossref
    3. Nurzhan Bokayev, Victor Burenkov, Dauren Matin, Aidos Adilkhanov, “Pre-Compactness of Sets and Compactness of Commutators for Riesz Potential in Global Morrey-Type Spaces”, Mathematics, 12:22 (2024), 3533  crossref
    4. D. Dzh. Dzhosef, “Integralnye neravenstva dlya trigonometricheskikh mnogochlenov v periodicheskikh prostranstvakh Morri”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina — 2024, SMFN, 70, no. 4, Rossiiskii universitet druzhby narodov, M., 2024, 561–574  mathnet  crossref
    5. V. I. Burenkov, D. J. Joseph, “Integral Inequalities for Entire Functions of Exponential Type in Morrey Spaces”, Proc. Steklov Inst. Math., 323 (2023), 81–100  mathnet  crossref  crossref
    6. V. I. Burenkov, D. J. Joseph, “Inequalities for entire functions of exponential type in Morrey spaces”, Eurasian Math. J., 13:3 (2022), 92–99  mathnet  crossref  mathscinet
    7. M. A. Senouci, “Boundedness of Riemann–Liouville fractional integral operator in Morrey spaces”, Eurasian Math. J., 12:1 (2021), 82–91  mathnet  crossref
    8. O. G. Avsyankin, “On integral operators with homogeneous kernels in Morrey spaces”, Eurasian Math. J., 12:1 (2021), 92–96  mathnet  crossref
    9. Chingiz HASHİMOV, Javad ASADZADEH, “Some properties of convolution in symmetric spaces and approximate identity”, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, 70:2 (2021), 773  crossref
    10. M. L. Goldman, E. G. Bakhtigareeva, “Some classes of operators in general Morrey-type spaces”, Eurasian Math. J., 11:4 (2020), 35–44  mathnet  crossref
    11. Burenkov V.I. Chigambayeva D.K. Nursultanov E.D., “Marcinkiewicz-Type Interpolation Theorem For Morrey-Type Spaces and Its Corollaries”, Complex Var. Elliptic Equ., 65:1 (2020), 87–108  crossref  mathscinet  isi
    12. O. G. Avsyankin, “On invertibility of convolution type operators in Morrey spaces”, Russian Math. (Iz. VUZ), 63:6 (2019), 1–7  mathnet  crossref  crossref  isi
    13. Mikhail L. Goldman, Elza Bakhtigareeva, Springer Proceedings in Mathematics & Statistics, 291, Modern Methods in Operator Theory and Harmonic Analysis, 2019, 3  crossref
    14. A. Almeida, S. Samko, “Approximation in generalized Morrey spaces”, Georgian Math. J., 25:2 (2018), 155–168  crossref  mathscinet  zmath  isi  scopus
    15. V. I. Burenkov, D. K. Chigambayeva, E. D. Nursultanov, “Marcinkiewicz-type interpolation theorem and estimates for convolutions for Morrey-type spaces”, Eurasian Math. J., 9:2 (2018), 82–88  mathnet
    16. O. G. Avsyankin, “Compactness of Some Operators of Convolution Type in Generalized Morrey Spaces”, Math. Notes, 104:3 (2018), 331–338  mathnet  crossref  crossref  mathscinet  isi  elib
    17. F. A. Guliyeva, S. R. Sadigova, “On some properties of convolution in Morrey type spaces”, Azerb. J. Math., 8:1 (2018), 140–150  mathscinet  zmath  isi
    18. O. G. Avsyankin, “On the Compactness of Convolution-Type Operators in Morrey Spaces”, Math. Notes, 102:4 (2017), 437–443  mathnet  crossref  crossref  mathscinet  isi  elib
    19. N. A. Bokayev, V. I. Burenkov, D. T. Matin, “On precompactness of a set in general local and global Morrey-type spaces”, Eurasian Math. J., 8:3 (2017), 109–115  mathnet  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:644
    Full-text PDF :425
    References:83
    First page:15
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025