Abstract:
An analog of the classical Young's inequality for convolutions of functions is proved in the case of general global Morrey-type spaces. The form of this analog is different from Young's inequality for convolutions in the case of Lebesgue spaces. A separate analysis is performed for the case of periodic functions.
The work of V. I. Burenkov (Sections 1–4) is supported by the Russian Science Foundation under grant 14-11-00443 and performed in Steklov Mathematical Institute of Russian Academy of Sciences. Section 5 is written by T. V. Tararykova.
Citation:
V. I. Burenkov, T. V. Tararykova, “An analog of Young's inequality for convolutions of functions for general Morrey-type spaces”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 113–132; Proc. Steklov Inst. Math., 293 (2016), 107–126
\Bibitem{BurTar16}
\by V.~I.~Burenkov, T.~V.~Tararykova
\paper An analog of Young's inequality for convolutions of functions for general Morrey-type spaces
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 113--132
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3708}
\crossref{https://doi.org/10.1134/S0371968516020084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628474}
\elib{https://elibrary.ru/item.asp?id=26344473}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 107--126
\crossref{https://doi.org/10.1134/S0081543816040088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200008}
\elib{https://elibrary.ru/item.asp?id=27120302}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980011762}
Linking options:
https://www.mathnet.ru/eng/tm3708
https://doi.org/10.1134/S0371968516020084
https://www.mathnet.ru/eng/tm/v293/p113
This publication is cited in the following 19 articles:
V. I. Burenkov, D. J. Joseph, “Inequalities for trigonometric polynomials in periodic Morrey spaces”, Eurasian Math. J., 15:2 (2024), 92–100
O. G. Avsyankin, S. S. Ashihmin, “On the compactness of integral operators with homogeneous kernels in local Morrey spaces”, Math. Notes, 116:3 (2024), 397–407
Nurzhan Bokayev, Victor Burenkov, Dauren Matin, Aidos Adilkhanov, “Pre-Compactness of Sets and Compactness of Commutators for Riesz Potential in Global Morrey-Type Spaces”, Mathematics, 12:22 (2024), 3533
D. Dzh. Dzhosef, “Integralnye neravenstva dlya trigonometricheskikh mnogochlenov v periodicheskikh prostranstvakh Morri”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina — 2024, SMFN, 70, no. 4, Rossiiskii universitet druzhby narodov, M., 2024, 561–574
V. I. Burenkov, D. J. Joseph, “Integral Inequalities for Entire Functions of Exponential Type in Morrey Spaces”, Proc. Steklov Inst. Math., 323 (2023), 81–100
V. I. Burenkov, D. J. Joseph, “Inequalities for entire functions of exponential type in Morrey spaces”, Eurasian Math. J., 13:3 (2022), 92–99
M. A. Senouci, “Boundedness of Riemann–Liouville fractional integral operator in Morrey spaces”, Eurasian Math. J., 12:1 (2021), 82–91
O. G. Avsyankin, “On integral operators with homogeneous kernels in Morrey spaces”, Eurasian Math. J., 12:1 (2021), 92–96
Chingiz HASHİMOV, Javad ASADZADEH, “Some properties of convolution in symmetric spaces and approximate identity”, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, 70:2 (2021), 773
M. L. Goldman, E. G. Bakhtigareeva, “Some classes of operators in general Morrey-type spaces”, Eurasian Math. J., 11:4 (2020), 35–44
Burenkov V.I. Chigambayeva D.K. Nursultanov E.D., “Marcinkiewicz-Type Interpolation Theorem For Morrey-Type Spaces and Its Corollaries”, Complex Var. Elliptic Equ., 65:1 (2020), 87–108
O. G. Avsyankin, “On invertibility of convolution type operators in Morrey spaces”, Russian Math. (Iz. VUZ), 63:6 (2019), 1–7
Mikhail L. Goldman, Elza Bakhtigareeva, Springer Proceedings in Mathematics & Statistics, 291, Modern Methods in Operator Theory and Harmonic Analysis, 2019, 3
A. Almeida, S. Samko, “Approximation in generalized Morrey spaces”, Georgian Math. J., 25:2 (2018), 155–168
V. I. Burenkov, D. K. Chigambayeva, E. D. Nursultanov, “Marcinkiewicz-type interpolation theorem and estimates for convolutions for Morrey-type spaces”, Eurasian Math. J., 9:2 (2018), 82–88
O. G. Avsyankin, “Compactness of Some Operators of Convolution Type in Generalized Morrey Spaces”, Math. Notes, 104:3 (2018), 331–338
F. A. Guliyeva, S. R. Sadigova, “On some properties of convolution in Morrey type spaces”, Azerb. J. Math., 8:1 (2018), 140–150
O. G. Avsyankin, “On the Compactness of Convolution-Type Operators in Morrey Spaces”, Math. Notes, 102:4 (2017), 437–443
N. A. Bokayev, V. I. Burenkov, D. T. Matin, “On precompactness of a set in general local and global Morrey-type spaces”, Eurasian Math. J., 8:3 (2017), 109–115