Abstract:
For polynomials in the Price system, we establish an inequality of different metrics in the Lorentz spaces. Applying this inequality, we prove a Hardy–Littlewood theorem for the Fourier–Price series with GM sequences of coefficients in the two-parameter Lorentz spaces and in the Nikol'skii–Besov spaces with a Price basis. We also study the behavior of the best approximations of functions by Price polynomials in the metric of the Lorentz space.
Citation:
A. U. Bimendina, E. S. Smailov, “Fourier–Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1<p<+\infty$, $1<\theta<+\infty$”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 83–104; Proc. Steklov Inst. Math., 293 (2016), 77–98
\Bibitem{BimSma16}
\by A.~U.~Bimendina, E.~S.~Smailov
\paper Fourier--Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1<p<+\infty$, $1<\theta<+\infty$
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 83--104
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3706}
\crossref{https://doi.org/10.1134/S0371968516020060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628472}
\elib{https://elibrary.ru/item.asp?id=26344471}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 77--98
\crossref{https://doi.org/10.1134/S0081543816040064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979995356}
Linking options:
https://www.mathnet.ru/eng/tm3706
https://doi.org/10.1134/S0371968516020060
https://www.mathnet.ru/eng/tm/v293/p83
This publication is cited in the following 2 articles: