Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 83–104
DOI: https://doi.org/10.1134/S0371968516020060
(Mi tm3706)
 

This article is cited in 2 scientific papers (total in 2 papers)

Fourier–Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1<p<+\infty$, $1<\theta<+\infty$

A. U. Bimendinaa, E. S. Smailovb

a E. A. Buketov Karaganda State University, ul. Universitetskaya 28, Karaganda, 100028 Republic of Kazakhstan
b Institute of Applied Mathematics, Committee on Science, Ministry of Education and Science of the Republic of Kazakhstan, ul. Universitetskaya 28A, Karaganda, 100028 Republic of Kazakhstan
Full-text PDF (298 kB) Citations (2)
References:
Abstract: For polynomials in the Price system, we establish an inequality of different metrics in the Lorentz spaces. Applying this inequality, we prove a Hardy–Littlewood theorem for the Fourier–Price series with GM sequences of coefficients in the two-parameter Lorentz spaces and in the Nikol'skii–Besov spaces with a Price basis. We also study the behavior of the best approximations of functions by Price polynomials in the metric of the Lorentz space.
Received: October 23, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 77–98
DOI: https://doi.org/10.1134/S0081543816040064
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. U. Bimendina, E. S. Smailov, “Fourier–Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1<p<+\infty$, $1<\theta<+\infty$”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 83–104; Proc. Steklov Inst. Math., 293 (2016), 77–98
Citation in format AMSBIB
\Bibitem{BimSma16}
\by A.~U.~Bimendina, E.~S.~Smailov
\paper Fourier--Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1<p<+\infty$, $1<\theta<+\infty$
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 83--104
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3706}
\crossref{https://doi.org/10.1134/S0371968516020060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628472}
\elib{https://elibrary.ru/item.asp?id=26344471}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 77--98
\crossref{https://doi.org/10.1134/S0081543816040064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979995356}
Linking options:
  • https://www.mathnet.ru/eng/tm3706
  • https://doi.org/10.1134/S0371968516020060
  • https://www.mathnet.ru/eng/tm/v293/p83
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :67
    References:60
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024