Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 73–82
DOI: https://doi.org/10.1134/S0371968516020059
(Mi tm3705)
 

This article is cited in 10 scientific papers (total in 10 papers)

Convergence of integrable operators affiliated to a finite von Neumann algebra

A. M. Bikchentaev

Kazan Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia
References:
Abstract: In the Banach space L1(M,τ) of operators integrable with respect to a tracial state τ on a von Neumann algebra M, convergence is analyzed. A notion of dispersion of operators in L2(M,τ) is introduced, and its main properties are established. A convergence criterion in L2(M,τ) in terms of the dispersion is proposed. It is shown that the following conditions for XL1(M,τ) are equivalent: (i) τ(X)=0, and (ii) I+zX11 for all zC. A. R. Padmanabhan's result (1979) on a property of the norm of the space L1(M,τ) is complemented. The convergence in L2(M,τ) of the imaginary components of some bounded sequences of operators from M is established. Corollaries on the convergence of dispersions are obtained.
Funding agency Grant number
Российский фонд фундаментальных исследований и правительство Республики Татарстан 15-41-02433
This work was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan, project no. 15-41-02433.
Received: August 13, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 67–76
DOI: https://doi.org/10.1134/S0081543816040052
Bibliographic databases:
Document Type: Article
UDC: 517.983+517.986
Language: Russian
Citation: A. M. Bikchentaev, “Convergence of integrable operators affiliated to a finite von Neumann algebra”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 73–82; Proc. Steklov Inst. Math., 293 (2016), 67–76
Citation in format AMSBIB
\Bibitem{Bik16}
\by A.~M.~Bikchentaev
\paper Convergence of integrable operators affiliated to a~finite von~Neumann algebra
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 73--82
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3705}
\crossref{https://doi.org/10.1134/S0371968516020059}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628471}
\elib{https://elibrary.ru/item.asp?id=26344470}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 67--76
\crossref{https://doi.org/10.1134/S0081543816040052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979994188}
Linking options:
  • https://www.mathnet.ru/eng/tm3705
  • https://doi.org/10.1134/S0371968516020059
  • https://www.mathnet.ru/eng/tm/v293/p73
  • This publication is cited in the following 10 articles:
    1. A. M. Bikchentaev, “Sled i integriruemye kommutatory izmerimykh operatorov, prisoedinennykh k polukonechnoi algebre fon Neimana”, Sib. matem. zhurn., 65:3 (2024), 455–468  mathnet  crossref
    2. A. M. Bikchentaev, “The Trace and Integrable Commutators of the Measurable Operators Affiliated to a Semifinite von Neumann Algebra”, Sib Math J, 65:3 (2024), 522  crossref
    3. Airat Bikchentaev, “Commutators in C-algebras and traces”, Ann. Funct. Anal., 14:2 (2023)  crossref
    4. A. M. Bikchentaev, “Essentially invertible measurable operators affiliated to a semifinite von Neumann algebra and commutators”, Siberian Math. J., 63:2 (2022), 224–232  mathnet  crossref  crossref
    5. A. M. Bikchentaev, Kh. Fawwaz, “Differences and commutators of idempotents in C-algebras”, Russian Math. (Iz. VUZ), 65:8 (2021), 13–22  mathnet  crossref  crossref
    6. A. M. Bikchentaev, P. N. Ivanshin, “On independence of events in noncommutative probability theory”, Lobachevskii J. Math., 42:10, SI (2021), 2306–2314  crossref  mathscinet  isi
    7. A. M. Bikchentaev, P. N. Ivanshin, “On operators all of which powers have the same trace”, Int. J. Theor. Phys., 60:2, SI (2021), 534–545  crossref  mathscinet  isi
    8. A. M. Bikchentaev, A. N. Sherstnev, “Studies on noncommutative measure theory in Kazan University (1968-2018)”, Int. J. Theor. Phys., 60:2, SI (2021), 585–596  crossref  mathscinet  isi
    9. A. M. Bikchentaev, “Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra”, Siberian Math. J., 59:2 (2018), 243–251  mathnet  crossref  crossref  isi  elib
    10. A. M. Bikchentaev, “Trace and Commutators of Measurable Operators Affiliated to a von Neumann Algebra”, J. Math. Sci. (N. Y.), 252:1 (2021), 8–19  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:1116
    Full-text PDF :880
    References:723
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025