Abstract:
In the Banach space L1(M,τ) of operators integrable with respect to a tracial state τ on a von Neumann algebra M, convergence is analyzed. A notion of dispersion of operators in L2(M,τ) is introduced, and its main properties are established. A convergence criterion in L2(M,τ) in terms of the dispersion is proposed. It is shown that the following conditions for X∈L1(M,τ) are equivalent: (i) τ(X)=0, and (ii) ‖I+zX‖1≥1 for all z∈C. A. R. Padmanabhan's result (1979) on a property of the norm of the space L1(M,τ) is complemented. The convergence in L2(M,τ) of the imaginary components of some bounded sequences of operators from M is established. Corollaries on the convergence of dispersions are obtained.
Citation:
A. M. Bikchentaev, “Convergence of integrable operators affiliated to a finite von Neumann algebra”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 73–82; Proc. Steklov Inst. Math., 293 (2016), 67–76
\Bibitem{Bik16}
\by A.~M.~Bikchentaev
\paper Convergence of integrable operators affiliated to a~finite von~Neumann algebra
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 73--82
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3705}
\crossref{https://doi.org/10.1134/S0371968516020059}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628471}
\elib{https://elibrary.ru/item.asp?id=26344470}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 67--76
\crossref{https://doi.org/10.1134/S0081543816040052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979994188}
Linking options:
https://www.mathnet.ru/eng/tm3705
https://doi.org/10.1134/S0371968516020059
https://www.mathnet.ru/eng/tm/v293/p73
This publication is cited in the following 10 articles:
A. M. Bikchentaev, “Sled i integriruemye kommutatory izmerimykh operatorov, prisoedinennykh k polukonechnoi algebre fon Neimana”, Sib. matem. zhurn., 65:3 (2024), 455–468
A. M. Bikchentaev, “The Trace and Integrable Commutators of the Measurable Operators Affiliated to a Semifinite von Neumann Algebra”, Sib Math J, 65:3 (2024), 522
Airat Bikchentaev, “Commutators in C∗-algebras and traces”, Ann. Funct. Anal., 14:2 (2023)
A. M. Bikchentaev, “Essentially invertible measurable operators affiliated to a semifinite von Neumann algebra and commutators”, Siberian Math. J., 63:2 (2022), 224–232
A. M. Bikchentaev, Kh. Fawwaz, “Differences and commutators of idempotents in C∗-algebras”, Russian Math. (Iz. VUZ), 65:8 (2021), 13–22
A. M. Bikchentaev, P. N. Ivanshin, “On independence of events in noncommutative probability theory”, Lobachevskii J. Math., 42:10, SI (2021), 2306–2314
A. M. Bikchentaev, P. N. Ivanshin, “On operators all of which powers have the same trace”, Int. J. Theor. Phys., 60:2, SI (2021), 534–545
A. M. Bikchentaev, A. N. Sherstnev, “Studies on noncommutative measure theory in Kazan University (1968-2018)”, Int. J. Theor. Phys., 60:2, SI (2021), 585–596
A. M. Bikchentaev, “Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra”, Siberian Math. J., 59:2 (2018), 243–251
A. M. Bikchentaev, “Trace and Commutators of Measurable Operators Affiliated to a von Neumann Algebra”, J. Math. Sci. (N. Y.), 252:1 (2021), 8–19