Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 73–82
DOI: https://doi.org/10.1134/S0371968516020059
(Mi tm3705)
 

This article is cited in 10 scientific papers (total in 10 papers)

Convergence of integrable operators affiliated to a finite von Neumann algebra

A. M. Bikchentaev

Kazan Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia
References:
Abstract: In the Banach space $L_1(\mathcal M,\tau)$ of operators integrable with respect to a tracial state $\tau$ on a von Neumann algebra $\mathcal M$, convergence is analyzed. A notion of dispersion of operators in $L_2(\mathcal M,\tau)$ is introduced, and its main properties are established. A convergence criterion in $L_2(\mathcal M,\tau)$ in terms of the dispersion is proposed. It is shown that the following conditions for $X\in L_1(\mathcal M,\tau)$ are equivalent: (i) $\tau (X)=0$, and (ii) $\|I+zX\|_1\geq 1$ for all $z\in\mathbb C$. A. R. Padmanabhan's result (1979) on a property of the norm of the space $L_1(\mathcal M,\tau)$ is complemented. The convergence in $L_2(\mathcal M,\tau)$ of the imaginary components of some bounded sequences of operators from $\mathcal M$ is established. Corollaries on the convergence of dispersions are obtained.
Funding agency Grant number
Российский фонд фундаментальных исследований и правительство Республики Татарстан 15-41-02433
This work was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan, project no. 15-41-02433.
Received: August 13, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 67–76
DOI: https://doi.org/10.1134/S0081543816040052
Bibliographic databases:
Document Type: Article
UDC: 517.983+517.986
Language: Russian
Citation: A. M. Bikchentaev, “Convergence of integrable operators affiliated to a finite von Neumann algebra”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 73–82; Proc. Steklov Inst. Math., 293 (2016), 67–76
Citation in format AMSBIB
\Bibitem{Bik16}
\by A.~M.~Bikchentaev
\paper Convergence of integrable operators affiliated to a~finite von~Neumann algebra
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 73--82
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3705}
\crossref{https://doi.org/10.1134/S0371968516020059}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628471}
\elib{https://elibrary.ru/item.asp?id=26344470}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 67--76
\crossref{https://doi.org/10.1134/S0081543816040052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979994188}
Linking options:
  • https://www.mathnet.ru/eng/tm3705
  • https://doi.org/10.1134/S0371968516020059
  • https://www.mathnet.ru/eng/tm/v293/p73
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:1066
    Full-text PDF :863
    References:704
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024