Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 288, Pages 149–162
DOI: https://doi.org/10.1134/S0371968515010100
(Mi tm3609)
 

This article is cited in 6 scientific papers (total in 6 papers)

Cyclopermutohedron

G. Yu. Paninaab

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Institute for Informatics and Automation of RAS, St. Petersburg, Russia
Full-text PDF (239 kB) Citations (6)
References:
Abstract: It is well known that the $k$-faces of the permutohedron $\Pi_n$ can be labeled by (all possible) linearly ordered partitions of the set $[n]=\{1,\dots,n\}$ into $n-k$ nonempty parts. The incidence relation corresponds to the refinement: a face $F$ contains a face $F'$ whenever the label of $F'$ refines the label of $F$. We consider the cell complex $\mathrm{CP}_{n+1}$ defined in a similar way but with the linear ordering replaced by the cyclic ordering. Namely, the $k$-cells of the complex $\mathrm{CP}_{n+1}$ are labeled by (all possible) cyclically ordered partitions of the set $[n+1]=\{1,\dots,n+1\}$ into $n+1-k>2$ nonempty parts. The incidence relation in $\mathrm{CP}_{n+1}$ again corresponds to the refinement: a cell $F$ contains a cell $F'$ whenever the label of $F'$ refines the label of $F$. The complex $\mathrm{CP}_{n+1}$ cannot be represented by a convex polytope, since it is not a combinatorial sphere (not even a combinatorial manifold). However, it can be represented by some virtual polytope (that is, the Minkowski difference of two convex polytopes), which we call a cyclopermutohedron $\mathcal{CP}_{n+1}$. It is defined explicitly as a weighted Minkowski sum of line segments. Informally, the cyclopermutohedron can be viewed as a “permutohedron with diagonals.” One of the motivations for introducing such an object is that the cyclopermutohedron is a “universal” polytope for moduli spaces of polygonal linkages.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-02021
Received in September 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 288, Pages 132–144
DOI: https://doi.org/10.1134/S0081543815010101
Bibliographic databases:
Document Type: Article
UDC: 514.172.45
Language: Russian
Citation: G. Yu. Panina, “Cyclopermutohedron”, Geometry, topology, and applications, Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 288, MAIK Nauka/Interperiodica, Moscow, 2015, 149–162; Proc. Steklov Inst. Math., 288 (2015), 132–144
Citation in format AMSBIB
\Bibitem{Pan15}
\by G.~Yu.~Panina
\paper Cyclopermutohedron
\inbook Geometry, topology, and applications
\bookinfo Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 288
\pages 149--162
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3609}
\crossref{https://doi.org/10.1134/S0371968515010100}
\elib{https://elibrary.ru/item.asp?id=23302185}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 288
\pages 132--144
\crossref{https://doi.org/10.1134/S0081543815010101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353881900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928719248}
Linking options:
  • https://www.mathnet.ru/eng/tm3609
  • https://doi.org/10.1134/S0371968515010100
  • https://www.mathnet.ru/eng/tm/v288/p149
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:352
    Full-text PDF :88
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024