Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 288, Pages 133–148
DOI: https://doi.org/10.1134/S0371968515010094
(Mi tm3612)
 

This article is cited in 5 scientific papers (total in 5 papers)

Extremal problems of circle packings on a sphere and irreducible contact graphs

O. R. Musinab, A. S. Tarasova

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
b University of Texas at Brownsville, Brownsville, TX, USA
Full-text PDF (276 kB) Citations (5)
References:
Abstract: Recently, we have enumerated (up to isometry) all locally rigid packings of congruent circles (spherical caps) on the unit sphere with the number of circles $N<12$. This problem is equivalent to the enumeration of irreducible spherical contact graphs. In this paper, we show that using the list of irreducible contact graphs, one can solve various problems on extremal packings such as the Tammes problem for the sphere and projective plane, the problem of the maximum kissing number in spherical packings, Danzer's problems, and other problems on irreducible contact graphs.
Funding agency Grant number
National Science Foundation DMS-1400876
Russian Foundation for Basic Research 13-01-12458, 15-01-99563
Received in June 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 288, Pages 117–131
DOI: https://doi.org/10.1134/S0081543815010095
Bibliographic databases:
Document Type: Article
UDC: 519.146
Language: Russian
Citation: O. R. Musin, A. S. Tarasov, “Extremal problems of circle packings on a sphere and irreducible contact graphs”, Geometry, topology, and applications, Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 288, MAIK Nauka/Interperiodica, Moscow, 2015, 133–148; Proc. Steklov Inst. Math., 288 (2015), 117–131
Citation in format AMSBIB
\Bibitem{MusTar15}
\by O.~R.~Musin, A.~S.~Tarasov
\paper Extremal problems of circle packings on a~sphere and irreducible contact graphs
\inbook Geometry, topology, and applications
\bookinfo Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 288
\pages 133--148
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3612}
\crossref{https://doi.org/10.1134/S0371968515010094}
\elib{https://elibrary.ru/item.asp?id=23302181}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 288
\pages 117--131
\crossref{https://doi.org/10.1134/S0081543815010095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353881900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928740855}
Linking options:
  • https://www.mathnet.ru/eng/tm3612
  • https://doi.org/10.1134/S0371968515010094
  • https://www.mathnet.ru/eng/tm/v288/p133
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:360
    Full-text PDF :116
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024