Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 288, Pages 67–94
DOI: https://doi.org/10.1134/S0371968515010057
(Mi tm3598)
 

This article is cited in 10 scientific papers (total in 10 papers)

Embedded flexible spherical cross-polytopes with nonconstant volumes

A. A. Gaifullinabc

a Lomonosov Moscow State University, Moscow, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
References:
Abstract: We construct examples of embedded flexible cross-polytopes in the spheres of all dimensions. These examples are interesting from two points of view. First, in dimensions $4$ and higher, they are the first examples of embedded flexible polyhedra. Notice that, in contrast to the spheres, in the Euclidean and Lobachevsky spaces of dimensions $4$ and higher still no example of an embedded flexible polyhedron is known. Second, we show that the volumes of the constructed flexible cross-polytopes are nonconstant during the flexion. Hence these cross-polytopes give counterexamples to the Bellows Conjecture for spherical polyhedra. Earlier a counterexample to this conjecture was constructed only in dimension $3$ (V. A. Alexandrov, 1997), and it was not embedded. For flexible polyhedra in spheres we suggest a weakening of the Bellows Conjecture, which we call the Modified Bellows Conjecture. We show that this conjecture holds for all flexible cross-polytopes of the simplest type, which includes our counterexamples to the ordinary Bellows Conjecture. Simultaneously, we obtain several geometric results on flexible cross-polytopes of the simplest type. In particular, we write down relations for the volumes of their faces of codimensions $1$ and $2$.
Received in October 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 288, Pages 56–80
DOI: https://doi.org/10.1134/S0081543815010058
Bibliographic databases:
Document Type: Article
UDC: 514.114
Language: Russian
Citation: A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes”, Geometry, topology, and applications, Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 288, MAIK Nauka/Interperiodica, Moscow, 2015, 67–94; Proc. Steklov Inst. Math., 288 (2015), 56–80
Citation in format AMSBIB
\Bibitem{Gai15}
\by A.~A.~Gaifullin
\paper Embedded flexible spherical cross-polytopes with nonconstant volumes
\inbook Geometry, topology, and applications
\bookinfo Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 288
\pages 67--94
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3598}
\crossref{https://doi.org/10.1134/S0371968515010057}
\elib{https://elibrary.ru/item.asp?id=23302165}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 288
\pages 56--80
\crossref{https://doi.org/10.1134/S0081543815010058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353881900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928718929}
Linking options:
  • https://www.mathnet.ru/eng/tm3598
  • https://doi.org/10.1134/S0371968515010057
  • https://www.mathnet.ru/eng/tm/v288/p67
  • Related presentations:
    This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:482
    Full-text PDF :92
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024