Abstract:
We construct self-intersecting flexible cross-polytopes in the spaces of constant curvature, that is, in Euclidean spaces $\mathbb E^n$, spheres $\mathbb S^n$, and Lobachevsky spaces $\Lambda ^n$ of all dimensions $n$. In dimensions $n\ge5$, these are the first examples of flexible polyhedra. Moreover, we classify all flexible cross-polytopes in each of the spaces $\mathbb E^n$, $\mathbb S^n$, and $\Lambda ^n$. For each type of flexible cross-polytopes, we provide an explicit parametrization of the flexion by either rational or elliptic functions.
The work was partially supported by the Russian Foundation for Basic Research (project nos. 13-01-12469 and 13-01-91151), by a grant of the President of the Russian Federation (project no. MD-2969.2014.1), and by the Dynasty Foundation.
Citation:
A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature”, Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 286, MAIK Nauka/Interperiodica, Moscow, 2014, 88–128; Proc. Steklov Inst. Math., 286 (2014), 77–113
\Bibitem{Gai14}
\by A.~A.~Gaifullin
\paper Flexible cross-polytopes in spaces of constant curvature
\inbook Algebraic topology, convex polytopes, and related topics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 286
\pages 88--128
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3566}
\crossref{https://doi.org/10.1134/S0371968514030066}
\elib{https://elibrary.ru/item.asp?id=22020635}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 286
\pages 77--113
\crossref{https://doi.org/10.1134/S0081543814060066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343605900006}
\elib{https://elibrary.ru/item.asp?id=24022342}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919790560}
Linking options:
https://www.mathnet.ru/eng/tm3566
https://doi.org/10.1134/S0371968514030066
https://www.mathnet.ru/eng/tm/v286/p88
This publication is cited in the following 15 articles: