Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 286, Pages 129–143
DOI: https://doi.org/10.1134/S0371968514030078
(Mi tm3569)
 

This article is cited in 2 scientific papers (total in 2 papers)

Subword complexes and edge subdivisions

M. A. Gorskyab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Université Paris Diderot — Paris 7, Institut de Mathématiques de Jussieu — Paris Rive Gauche, UMR 7586 du CNRS, Paris, France
Full-text PDF (246 kB) Citations (2)
References:
Abstract: For a finite Coxeter group, a subword complex is a simplicial complex associated with a pair $(\mathbf Q,\pi)$, where $\mathbf Q$ is a word in the alphabet of simple reflections and $\pi$ is a group element. We discuss the transformations of such a complex that are induced by braid moves of the word $\mathbf Q$. We show that under certain conditions, such a transformation is a composition of edge subdivisions and inverse edge subdivisions. In this case, we describe how the $H$- and $\gamma$-polynomials change under the transformation. This case includes all braid moves for groups with simply laced Coxeter diagrams.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-92612
The work was supported by DIM RDM-IdF of the Region Ile-de-France and by the Russian Foundation for Basic Research (project no. 14-01-92612-KO).
Received in December 2013
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 286, Pages 114–127
DOI: https://doi.org/10.1134/S0081543814060078
Bibliographic databases:
Document Type: Article
UDC: 514.172.45
Language: Russian
Citation: M. A. Gorsky, “Subword complexes and edge subdivisions”, Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 286, MAIK Nauka/Interperiodica, Moscow, 2014, 129–143; Proc. Steklov Inst. Math., 286 (2014), 114–127
Citation in format AMSBIB
\Bibitem{Gor14}
\by M.~A.~Gorsky
\paper Subword complexes and edge subdivisions
\inbook Algebraic topology, convex polytopes, and related topics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 286
\pages 129--143
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3569}
\crossref{https://doi.org/10.1134/S0371968514030078}
\elib{https://elibrary.ru/item.asp?id=22020636}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 286
\pages 114--127
\crossref{https://doi.org/10.1134/S0081543814060078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343605900007}
\elib{https://elibrary.ru/item.asp?id=24022291}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919782060}
Linking options:
  • https://www.mathnet.ru/eng/tm3569
  • https://doi.org/10.1134/S0371968514030078
  • https://www.mathnet.ru/eng/tm/v286/p129
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :59
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024