Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 286, Pages 22–39
DOI: https://doi.org/10.1134/S0371968514030029
(Mi tm3560)
 

This article is cited in 2 scientific papers (total in 2 papers)

On Cohen braids

V. G. Bardakovab, V. V. Vershininac, J. Wud

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Département des Sciences Mathématiques, Université Montpellier 2, Montpellier cedex 5, France
d Department of Mathematics, National University of Singapore, Singapore
Full-text PDF (255 kB) Citations (2)
References:
Abstract: For a general connected surface $M$ and an arbitrary braid $\alpha$ from the surface braid group $B_{n-1}(M)$, we study the system of equations $d_1\beta=\dots=d_n\beta=\alpha$, where the operation $d_i$ is the removal of the $i$th strand. We prove that for $M\neq S^2$ and $M\neq\mathbb R\mathrm P^2$, this system of equations has a solution $\beta\in B_n(M)$ if and only if $d_1\alpha=\dots=d_{n-1}\alpha$. We call the set of braids satisfying the last system of equations Cohen braids. We study Cohen braids and prove that they form a subgroup. We also construct a set of generators for the group of Cohen braids. In the cases of the sphere and the projective plane we give some examples for a small number of strands.
Received in November 2013
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 286, Pages 16–32
DOI: https://doi.org/10.1134/S0081543814060029
Bibliographic databases:
Document Type: Article
UDC: 512.54+515.1
Language: Russian
Citation: V. G. Bardakov, V. V. Vershinin, J. Wu, “On Cohen braids”, Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 286, MAIK Nauka/Interperiodica, Moscow, 2014, 22–39; Proc. Steklov Inst. Math., 286 (2014), 16–32
Citation in format AMSBIB
\Bibitem{BarVerWu14}
\by V.~G.~Bardakov, V.~V.~Vershinin, J.~Wu
\paper On Cohen braids
\inbook Algebraic topology, convex polytopes, and related topics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 286
\pages 22--39
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3560}
\crossref{https://doi.org/10.1134/S0371968514030029}
\elib{https://elibrary.ru/item.asp?id=22020631}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 286
\pages 16--32
\crossref{https://doi.org/10.1134/S0081543814060029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343605900002}
\elib{https://elibrary.ru/item.asp?id=24022366}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919794856}
Linking options:
  • https://www.mathnet.ru/eng/tm3560
  • https://doi.org/10.1134/S0371968514030029
  • https://www.mathnet.ru/eng/tm/v286/p22
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :71
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024