Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 286, Pages 40–64
DOI: https://doi.org/10.1134/S0371968514030030
(Mi tm3557)
 

Operator pencils on the algebra of densities

A. Biggs, H. M. Khudaverdian

School of Mathematics, University of Manchester, Manchester, UK
References:
Abstract: We continue to study equivariant pencil liftings and differential operators on the algebra of densities. We emphasize the role played by the geometry of the extended manifold where the algebra of densities is a special class of functions. Firstly we consider basic examples. We give a projective line of $\mathrm{diff}M)$-equivariant pencil liftings for first order operators and describe the canonical second order self-adjoint lifting. Secondly we study pencil liftings equivariant with respect to volume preserving transformations. This helps to understand the role of self-adjointness for the canonical pencils. Then we introduce the Duval–Lecomte–Ovsienko (DLO) pencil lifting which is derived from the full symbol calculus of projective quantisation. We use the DLO pencil lifting to describe all regular $\mathrm{proj}$-equivariant pencil liftings. In particular, the comparison of these pencils with the canonical pencil for second order operators leads to objects related to the Schwarzian.
Received in January 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 286, Pages 33–54
DOI: https://doi.org/10.1134/S0081543814060030
Bibliographic databases:
Document Type: Article
UDC: 512.643.2+514.76
Language: Russian
Citation: A. Biggs, H. M. Khudaverdian, “Operator pencils on the algebra of densities”, Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 286, MAIK Nauka/Interperiodica, Moscow, 2014, 40–64; Proc. Steklov Inst. Math., 286 (2014), 33–54
Citation in format AMSBIB
\Bibitem{BigKhu14}
\by A.~Biggs, H.~M.~Khudaverdian
\paper Operator pencils on the algebra of densities
\inbook Algebraic topology, convex polytopes, and related topics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 286
\pages 40--64
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3557}
\crossref{https://doi.org/10.1134/S0371968514030030}
\elib{https://elibrary.ru/item.asp?id=22020632}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 286
\pages 33--54
\crossref{https://doi.org/10.1134/S0081543814060030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343605900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919798009}
Linking options:
  • https://www.mathnet.ru/eng/tm3557
  • https://doi.org/10.1134/S0371968514030030
  • https://www.mathnet.ru/eng/tm/v286/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :46
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024