Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 284, Pages 169–175
DOI: https://doi.org/10.1134/S0371968514010117
(Mi tm3535)
 

This article is cited in 1 scientific paper (total in 1 paper)

On two-sided and asymptotic estimates for the norms of embedding operators of ˚Wn2(1,1) into Lq(dμ)

G. A. Kalyabin

Peoples Friendship University of Russia, Moscow, Russia
Full-text PDF (190 kB) Citations (1)
References:
Abstract: Explicit upper and lower estimates are given for the norms of the operators of embedding of ˚Wn2(1,1), nN, in Lq(dμ), 0<q<. Conditions on the measure μ are obtained under which the ratio of the above estimates tends to 1 as n, and asymptotic formulas are presented for these norms in regular cases. As a corollary, an asymptotic formula (as n) is established for the minimum eigenvalues λ1,n,β, β>0, of the boundary value problems (d2/dx2)nu(x)=λ|x|β1u(x), x(1,1), u(k)(±1)=0, k{0,1,,n1}.
Received in July 2013
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 284, Pages 161–167
DOI: https://doi.org/10.1134/S0081543814010118
Bibliographic databases:
Document Type: Article
UDC: 517.518.23+517.927
Language: Russian
Citation: G. A. Kalyabin, “On two-sided and asymptotic estimates for the norms of embedding operators of ˚Wn2(1,1) into Lq(dμ)”, Function spaces and related problems of analysis, Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 284, MAIK Nauka/Interperiodica, Moscow, 2014, 169–175; Proc. Steklov Inst. Math., 284 (2014), 161–167
Citation in format AMSBIB
\Bibitem{Kal14}
\by G.~A.~Kalyabin
\paper On two-sided and asymptotic estimates for the norms of embedding operators of $\mathring W_2^n(-1,1)$ into $L_q(d\mu)$
\inbook Function spaces and related problems of analysis
\bookinfo Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 284
\pages 169--175
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3535}
\crossref{https://doi.org/10.1134/S0371968514010117}
\elib{https://elibrary.ru/item.asp?id=21249110}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 284
\pages 161--167
\crossref{https://doi.org/10.1134/S0081543814010118}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335559000010}
\elib{https://elibrary.ru/item.asp?id=21876639}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899826324}
Linking options:
  • https://www.mathnet.ru/eng/tm3535
  • https://doi.org/10.1134/S0371968514010117
  • https://www.mathnet.ru/eng/tm/v284/p169
  • This publication is cited in the following 1 articles:
    1. Raul Hindov, Shahaf Nitzan, Jan‐Fredrik Olsen, Eskil Rydhe, “A sharp higher order Sobolev embedding”, Mathematika, 71:2 (2025)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :103
    References:88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025