Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 284, Pages 176–199
DOI: https://doi.org/10.1134/S0371968514010129
(Mi tm3528)
 

This article is cited in 6 scientific papers (total in 6 papers)

Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser

R. K. Kovachevaa, S. P. Suetinb

a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
b Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (369 kB) Citations (6)
References:
Abstract: The well-known approach of J. Nuttall to the derivation of strong asymptotic formulas for the Hermite–Padé polynomials for a set of $m$ multivalued functions is based on the conjecture that there exists a canonical (in the sense of decomposition into sheets) $m$-sheeted Riemann surface possessing certain properties. In this paper, for $m=3$, we introduce a notion of an abstract Nuttall condenser and describe a procedure for constructing (based on this condenser) a three-sheeted Riemann surface $\mathfrak R_3$ that has a canonical decomposition. We consider a system of three functions $\mathfrak f_1,\mathfrak f_2,\mathfrak f_3$ that are rational on the constructed Riemann surface and satisfy the independence condition $\det\bigl[\mathfrak f_k(z^{(j)})\bigr]\not\equiv0$. In the case of $m=3$, we refine the main theorem from Nuttall's paper of 1981. In particular, we show that in this case the complement $\overline{\mathbb C}\setminus B$ of the open (possibly, disconnected) set $B\subset\overline{\mathbb C}$ introduced in Nuttall's paper consists of a finite number of analytic arcs. We also propose a new conjecture concerning strong asymptotic formulas for the Padé approximants.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00330-a
13-01-12430-ofi-m
Ministry of Education and Science of the Russian Federation NSh-4664.2012.1
The work of the second author was supported by the Russian Foundation for Basic Research (project nos. 11-01-00330-a and 13-01-12430-ofi-m2) and by a grant of the President of the Russian Federation (project no. NSh-4664.2012.1).
Received in September 2013
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 284, Pages 168–191
DOI: https://doi.org/10.1134/S008154381401012X
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: R. K. Kovacheva, S. P. Suetin, “Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser”, Function spaces and related problems of analysis, Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 284, MAIK Nauka/Interperiodica, Moscow, 2014, 176–199; Proc. Steklov Inst. Math., 284 (2014), 168–191
Citation in format AMSBIB
\Bibitem{KovSue14}
\by R.~K.~Kovacheva, S.~P.~Suetin
\paper Distribution of zeros of the Hermite--Pad\'e polynomials for a~system of three functions, and the Nuttall condenser
\inbook Function spaces and related problems of analysis
\bookinfo Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 284
\pages 176--199
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3528}
\crossref{https://doi.org/10.1134/S0371968514010129}
\elib{https://elibrary.ru/item.asp?id=21249111}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 284
\pages 168--191
\crossref{https://doi.org/10.1134/S008154381401012X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335559000011}
\elib{https://elibrary.ru/item.asp?id=21876711}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899844590}
Linking options:
  • https://www.mathnet.ru/eng/tm3528
  • https://doi.org/10.1134/S0371968514010129
  • https://www.mathnet.ru/eng/tm/v284/p176
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025