|
This article is cited in 5 scientific papers (total in 5 papers)
Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser
R. K. Kovachevaa, S. P. Suetinb a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
b Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
Abstract:
The well-known approach of J. Nuttall to the derivation of strong asymptotic formulas for the Hermite–Padé polynomials for a set of $m$ multivalued functions is based on the conjecture that there exists a canonical (in the sense of decomposition into sheets) $m$-sheeted Riemann surface possessing certain properties. In this paper, for $m=3$, we introduce a notion of an abstract Nuttall condenser and describe a procedure for constructing (based on this condenser) a three-sheeted Riemann surface $\mathfrak R_3$ that has a canonical decomposition. We consider a system of three functions $\mathfrak f_1,\mathfrak f_2,\mathfrak f_3$ that are rational on the constructed Riemann surface and satisfy the independence condition $\det\bigl[\mathfrak f_k(z^{(j)})\bigr]\not\equiv0$. In the case of $m=3$, we refine the main theorem from Nuttall's paper of 1981. In particular, we show that in this case the complement $\overline{\mathbb C}\setminus B$ of the open (possibly, disconnected) set $B\subset\overline{\mathbb C}$ introduced in Nuttall's paper consists of a finite number of analytic arcs. We also propose a new conjecture concerning strong asymptotic formulas for the Padé approximants.
Received in September 2013
Citation:
R. K. Kovacheva, S. P. Suetin, “Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser”, Function spaces and related problems of analysis, Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 284, MAIK Nauka/Interperiodica, Moscow, 2014, 176–199; Proc. Steklov Inst. Math., 284 (2014), 168–191
Linking options:
https://www.mathnet.ru/eng/tm3528https://doi.org/10.1134/S0371968514010129 https://www.mathnet.ru/eng/tm/v284/p176
|
Statistics & downloads: |
Abstract page: | 436 | Full-text PDF : | 63 | References: | 65 |
|