Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 278, Pages 75–95 (Mi tm3417)  

This article is cited in 3 scientific papers (total in 3 papers)

On the Navier–Stokes equations: Existence theorems and energy equalities

V. V. Zhikova, S. E. Pastukhovab

a Vladimir State University, Vladimir, Russia
b Moscow State Institute of Radio Engineering, Electronics and Automation (Technical University), Moscow, Russia
Full-text PDF (276 kB) Citations (3)
References:
Abstract: Currently available results on the solvability of the Navier–Stokes equations for incompressible non-Newtonian fluids are presented. The order of nonlinearity in the equations may be variable; the only requirement is that it must be a measurable function. Unsteady and steady equations are considered. A lot of attention is paid to the recovery of energy balance, whose violation is theoretically admissible, in particular, in the three-dimensional classical unsteady Navier–Stokes equation. When constructing a weak solution by a limit procedure, a measure arises as a limit of viscous energy densities. Generally speaking, the limit measure contains a nonnegative singular (with respect to the Lebesgue measure) component. It is this singular component that maintains energy balance. Sufficient conditions for the absence of a singular component are studied: in this case, the standard energy equality holds. In many respects, only the regular component of the limit measure is important: in the natural form it is equal to the product of the viscous stress tensor and the gradient of a solution; if this natural form is retained, then the problem is solvable. Conditions are found for the validity of the indicated fundamental representation of the absolutely continuous component of the limit measure.
Received in September 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 278, Pages 67–87
DOI: https://doi.org/10.1134/S0081543812060089
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: V. V. Zhikov, S. E. Pastukhova, “On the Navier–Stokes equations: Existence theorems and energy equalities”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 278, MAIK Nauka/Interperiodica, Moscow, 2012, 75–95; Proc. Steklov Inst. Math., 278 (2012), 67–87
Citation in format AMSBIB
\Bibitem{ZhiPas12}
\by V.~V.~Zhikov, S.~E.~Pastukhova
\paper On the Navier--Stokes equations: Existence theorems and energy equalities
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 278
\pages 75--95
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3417}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3058785}
\elib{https://elibrary.ru/item.asp?id=17928413}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 278
\pages 67--87
\crossref{https://doi.org/10.1134/S0081543812060089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309861500008}
\elib{https://elibrary.ru/item.asp?id=20494666}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867371829}
Linking options:
  • https://www.mathnet.ru/eng/tm3417
  • https://www.mathnet.ru/eng/tm/v278/p75
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:724
    Full-text PDF :146
    References:160
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024