Abstract:
We obtain a classification of d-coverings of degree d≥2 of the circle S1 up to conjugation by orientation-preserving homeomorphisms. We show that being equipped with a scheme, the d-equivalence class of an invariant countable set (distinguished set) of the linear expanding endomorphism of degree d is a complete classification invariant.
Citation:
E. V. Zhuzhoma, N. V. Isaenkova, “Classification of coverings of the circle”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 278, MAIK Nauka/Interperiodica, Moscow, 2012, 96–101; Proc. Steklov Inst. Math., 278 (2012), 88–93
\Bibitem{ZhuIsa12}
\by E.~V.~Zhuzhoma, N.~V.~Isaenkova
\paper Classification of coverings of the circle
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 278
\pages 96--101
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3400}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3058786}
\elib{https://elibrary.ru/item.asp?id=17928414}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 278
\pages 88--93
\crossref{https://doi.org/10.1134/S0081543812060090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309861500009}
\elib{https://elibrary.ru/item.asp?id=20494687}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867378311}
Linking options:
https://www.mathnet.ru/eng/tm3400
https://www.mathnet.ru/eng/tm/v278/p96
This publication is cited in the following 3 articles:
N. V. Isaenkova, E. V. Zhuzhoma, “O sootvetstvii bazisnykh mnozhestv A-endomorfizmov i A-diffeomorfizmov”, Chelyab. fiz.-matem. zhurn., 3:3 (2018), 295–310
N. V. Isaenkova, E. V. Zhuzhoma, “Sopryazhenie diffeomorfizmov Smeila-Vietorisa posredstvom sopryazheniya endomorfizmov”, Zhurnal SVMO, 19:1 (2017), 38–50
N. V. Isaenkova, E. V. Zhuzhoma, “Nonwandering Set of Smale–Vietoris Diffeomorphisms”, J Math Sci, 208:1 (2015), 139