Abstract:
We obtain conditions that allow one to evaluate the relative frequency of occurrence of the reachable set of a control system in a given set. If the relative frequency of occurrence in this set is $1$, then the set is said to be statistically invariant. It is assumed that the images of the right-hand side of the differential inclusion corresponding to the given control system are convex, closed, but not necessarily compact. We also study the basic properties of the space $\mathrm{clcv}(\mathbb R^n)$ of nonempty closed convex subsets of $\mathbb R^n$ with the Hausdorff–Bebutov metric.
Citation:
L. I. Rodina, “The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and statistically invariant sets of control systems”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 278, MAIK Nauka/Interperiodica, Moscow, 2012, 217–226; Proc. Steklov Inst. Math., 278 (2012), 208–217
\Bibitem{Rod12}
\by L.~I.~Rodina
\paper The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff--Bebutov metric and statistically invariant sets of control systems
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 278
\pages 217--226
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3411}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3058797}
\elib{https://elibrary.ru/item.asp?id=17928425}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 278
\pages 208--217
\crossref{https://doi.org/10.1134/S008154381206020X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309861500020}
\elib{https://elibrary.ru/item.asp?id=20494635}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867365224}
Linking options:
https://www.mathnet.ru/eng/tm3411
https://www.mathnet.ru/eng/tm/v278/p217
This publication is cited in the following 5 articles:
Ya. Yu. Larina, L. I. Rodina, “Statistical characteristics of continuous functions and statistically weakly invariant sets of controllable system”, Russian Math. (Iz. VUZ), 61:2 (2017), 28–35
A. Kh. Khammadi, “Kharakteristiki invariantnosti mnozhestva dostizhimosti upravlyaemykh sistem so sluchainymi koeffitsientami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, no. 2, 100–110
L. I. Rodina, A. Kh. Khammadi, “Statistical characteristics of attainability set of controllable systems with random coefficients”, Russian Math. (Iz. VUZ), 58:11 (2014), 43–53
L. I. Rodina, A. Kh. Khammadi, “Kharakteristiki mnozhestva dostizhimosti, svyazannye s invariantnostyu upravlyaemoi sistemy na konechnom promezhutke vremeni”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 1, 35–48
Ya. Yu. Larina, L. I. Rodina, “Statisticheskie kharakteristiki upravlyaemykh sistem, voznikayuschie v razlichnykh modelyakh estestvoznaniya”, Model. i analiz inform. sistem, 20:5 (2013), 62–77