Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 278, Pages 227–241 (Mi tm3409)  

This article is cited in 18 scientific papers (total in 18 papers)

Closed Euler elasticae

Yu. L. Sachkov

Program Systems Institute, Russian Academy of Sciences, Pereslavl-Zalessky, Russia
References:
Abstract: Euler's classical problem on stationary configurations of an elastic rod in a plane is studied as an optimal control problem on the group of motions of a plane. We show complete integrability of the Hamiltonian system of the Pontryagin maximum principle. We prove that a closed elastica is either a circle or a figure-of-eight elastica, wrapped around itself several times. Finally, we study local and global optimality of closed elasticae: the figure-of-eight elastica is optimal only locally, while the circle is optimal globally.
Received in February 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 278, Pages 218–232
DOI: https://doi.org/10.1134/S0081543812060211
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: English
Citation: Yu. L. Sachkov, “Closed Euler elasticae”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 278, MAIK Nauka/Interperiodica, Moscow, 2012, 227–241; Proc. Steklov Inst. Math., 278 (2012), 218–232
Citation in format AMSBIB
\Bibitem{Sac12}
\by Yu.~L.~Sachkov
\paper Closed Euler elasticae
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 278
\pages 227--241
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3058798}
\elib{https://elibrary.ru/item.asp?id=17928426}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 278
\pages 218--232
\crossref{https://doi.org/10.1134/S0081543812060211}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309861500021}
\elib{https://elibrary.ru/item.asp?id=20494300}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867338511}
Linking options:
  • https://www.mathnet.ru/eng/tm3409
  • https://www.mathnet.ru/eng/tm/v278/p227
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :130
    References:102
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024