Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 276, Pages 46–56 (Mi tm3364)  

This article is cited in 4 scientific papers (total in 4 papers)

Fundamental solutions to Pell equation with prescribed size

Étienne Fouvry, Florent Jouve

Université Paris-Sud, Laboratoire de Mathématique, UMR 8628, CNRS, Orsay, France
Full-text PDF (208 kB) Citations (4)
References:
Abstract: We prove that the number of parameters D up to a fixed x2 such that the fundamental solution εD to the Pell equation T2DU2=1 lies between D12+α1 and D12+α2 is greater than xlog2x up to a constant as long as α1<α2 and α1<3/2. The starting point of the proof is a reduction step already used by the authors in earlier works. This approach is amenable to analytic methods. Along the same lines, and inspired by the work of Dirichlet, we show that the set of parameters Dx for which logεD is larger than D14 has a cardinality essentially larger than x14log2x.
Received in July 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 276, Pages 40–50
DOI: https://doi.org/10.1134/S0081543812010051
Bibliographic databases:
Document Type: Article
UDC: 511.68
Language: English
Citation: Étienne Fouvry, Florent Jouve, “Fundamental solutions to Pell equation with prescribed size”, Number theory, algebra, and analysis, Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 276, MAIK Nauka/Interperiodica, Moscow, 2012, 46–56; Proc. Steklov Inst. Math., 276 (2012), 40–50
Citation in format AMSBIB
\Bibitem{FouJou12}
\by \'Etienne~Fouvry, Florent~Jouve
\paper Fundamental solutions to Pell equation with prescribed size
\inbook Number theory, algebra, and analysis
\bookinfo Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 276
\pages 46--56
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3364}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986109}
\elib{https://elibrary.ru/item.asp?id=17680268}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 276
\pages 40--50
\crossref{https://doi.org/10.1134/S0081543812010051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303468300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860357546}
Linking options:
  • https://www.mathnet.ru/eng/tm3364
  • https://www.mathnet.ru/eng/tm/v276/p46
  • This publication is cited in the following 4 articles:
    1. Huang Zhizhong, “Diophantine Approximation and Local Distribution on a Toric Surface II”, Bull. Soc. Math. Fr., 148:2 (2020), 189–235  crossref  mathscinet  isi  scopus
    2. Xi P., “Counting Fundamental Solutions to the Pell Equation With Prescribed Size”, Compos. Math., 154:11 (2018), 2379–2402  crossref  mathscinet  zmath  isi  scopus
    3. Fouvry E., Jouve F., “Size of Regulators and Consecutive Square-Free Numbers”, Math. Z., 273:3-4 (2013), 869–882  crossref  mathscinet  zmath  isi
    4. Fouvry E., Jouve F., “A Positive Density of Fundamental Discriminants with Large Regulator”, Pac. J. Math., 262:1 (2013), 81–107  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :117
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025