Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 276, Pages 57–82 (Mi tm3357)  

This article is cited in 8 scientific papers (total in 8 papers)

On the distribution of values of the derivative of the Riemann zeta function at its zeros. I

Akio Fujii

Department of Mathematics, Rikkyo University, Tokyo, Japan
Full-text PDF (282 kB) Citations (8)
References:
Abstract: Let $\zeta'(s)$ be the derivative of the Riemann zeta function $\zeta(s)$. A study on the value distribution of $\zeta'(s)$ at the non-trivial zeros $\rho$ of $\zeta(s)$ is presented. In particular, for a fixed positive number $X$, an asymptotic formula and a non-trivial upper bound for the sum $\sum_{0<\operatorname{Im}\rho\leq T}\zeta'(\rho)X^\rho$ as $T\to\infty$ are given. We clarify the dependence on the arithmetic nature of $X$.
Received in August 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 276, Pages 51–76
DOI: https://doi.org/10.1134/S0081543812010063
Bibliographic databases:
Document Type: Article
UDC: 511.331
Language: English
Citation: Akio Fujii, “On the distribution of values of the derivative of the Riemann zeta function at its zeros. I”, Number theory, algebra, and analysis, Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 276, MAIK Nauka/Interperiodica, Moscow, 2012, 57–82; Proc. Steklov Inst. Math., 276 (2012), 51–76
Citation in format AMSBIB
\Bibitem{Fuj12}
\by Akio~Fujii
\paper On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I
\inbook Number theory, algebra, and analysis
\bookinfo Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 276
\pages 57--82
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3357}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986110}
\elib{https://elibrary.ru/item.asp?id=17680269}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 276
\pages 51--76
\crossref{https://doi.org/10.1134/S0081543812010063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303468300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860436703}
Linking options:
  • https://www.mathnet.ru/eng/tm3357
  • https://www.mathnet.ru/eng/tm/v276/p57
  • This publication is cited in the following 8 articles:
    1. Andrew Pearce-Crump, “A further generalization of sums of higher derivatives of the Riemann zeta function”, Int. J. Number Theory, 21:02 (2025), 357  crossref
    2. Antanas Laurinčikas, “Joint Discrete Approximation of Analytic Functions by Shifts of the Riemann Zeta-Function Twisted by Gram Points”, Mathematics, 11:3 (2023), 565  crossref
    3. Juyal A., Maji B., Sathyanarayana S., “An Exact Formula For a Lambert Series Associated to a Cusp Form and the Mobius Function”, Ramanujan J., 57:2 (2022), 769–784  crossref  mathscinet  isi
    4. Christopher Hughes, Andrew Pearce-Crump, “A discrete mean-value theorem for the higher derivatives of the Riemann zeta function”, Journal of Number Theory, 241 (2022), 142  crossref
    5. Pedro Guicardi, Matilde Marcolli, “Fractality in cosmic topology models with spectral action gravity”, Class. Quantum Grav., 39:16 (2022), 165007  crossref
    6. Mekkaoui M., Derbal A., Mazhouda K., “On Some Sums At the a-Points of the K-Th Derivatives of the Dirichlet l-Functions”, Turk. J. Math., 44:5 (2020), 1544–1560  crossref  mathscinet  isi
    7. M. T. Jakhlouti, K. Mazhouda, “Distribution of the values of the derivative of the Dirichlet $L$-functions at its $a$-points”, Bull. Korean. Math. Soc., 54:4 (2017), 1141–1158  crossref  mathscinet  zmath  isi
    8. R. Garunkštis, J. Steuding, “On the roots of the equation $\zeta(s)=a$”, Abh. Math. Semin. Univ. Hambg., 84:1 (2014), 1–15  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :148
    References:71
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025