Abstract:
Let $\zeta'(s)$ be the derivative of the Riemann zeta function $\zeta(s)$. A study on the value distribution of $\zeta'(s)$ at the non-trivial zeros $\rho$ of $\zeta(s)$ is presented. In particular, for a fixed positive number $X$, an asymptotic formula and a non-trivial upper bound for the sum $\sum_{0<\operatorname{Im}\rho\leq T}\zeta'(\rho)X^\rho$ as $T\to\infty$ are given. We clarify the dependence on the arithmetic nature of $X$.
Citation:
Akio Fujii, “On the distribution of values of the derivative of the Riemann zeta function at its zeros. I”, Number theory, algebra, and analysis, Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 276, MAIK Nauka/Interperiodica, Moscow, 2012, 57–82; Proc. Steklov Inst. Math., 276 (2012), 51–76
\Bibitem{Fuj12}
\by Akio~Fujii
\paper On the distribution of values of the derivative of the Riemann zeta function at its zeros.~I
\inbook Number theory, algebra, and analysis
\bookinfo Collected papers. Dedicated to Professor Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 276
\pages 57--82
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3357}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986110}
\elib{https://elibrary.ru/item.asp?id=17680269}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 276
\pages 51--76
\crossref{https://doi.org/10.1134/S0081543812010063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303468300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860436703}
Linking options:
https://www.mathnet.ru/eng/tm3357
https://www.mathnet.ru/eng/tm/v276/p57
This publication is cited in the following 8 articles:
Andrew Pearce-Crump, “A further generalization of sums of higher derivatives of the Riemann zeta function”, Int. J. Number Theory, 21:02 (2025), 357
Antanas Laurinčikas, “Joint Discrete Approximation of Analytic Functions by Shifts of the Riemann Zeta-Function Twisted by Gram Points”, Mathematics, 11:3 (2023), 565
Juyal A., Maji B., Sathyanarayana S., “An Exact Formula For a Lambert Series Associated to a Cusp Form and the Mobius Function”, Ramanujan J., 57:2 (2022), 769–784
Christopher Hughes, Andrew Pearce-Crump, “A discrete mean-value theorem for the higher derivatives of the Riemann zeta function”, Journal of Number Theory, 241 (2022), 142
Pedro Guicardi, Matilde Marcolli, “Fractality in cosmic topology models with spectral action gravity”, Class. Quantum Grav., 39:16 (2022), 165007
Mekkaoui M., Derbal A., Mazhouda K., “On Some Sums At the a-Points of the K-Th Derivatives of the Dirichlet l-Functions”, Turk. J. Math., 44:5 (2020), 1544–1560
M. T. Jakhlouti, K. Mazhouda, “Distribution of the values of the derivative of the Dirichlet $L$-functions at its $a$-points”, Bull. Korean. Math. Soc., 54:4 (2017), 1141–1158
R. Garunkštis, J. Steuding, “On the roots of the equation $\zeta(s)=a$”, Abh. Math. Semin. Univ. Hambg., 84:1 (2014), 1–15