Abstract:
It is proved that the family of bi-Lipschitz classes of Delone sets in Euclidean space of dimension at least 2 has the cardinality of the continuum.
Citation:
A. N. Magazinov, “The family of bi-Lipschitz classes of Delone sets in Euclidean space has the cardinality of the continuum”, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth, Trudy Mat. Inst. Steklova, 275, MAIK Nauka/Interperiodica, Moscow, 2011, 87–98; Proc. Steklov Inst. Math., 275 (2011), 78–89
\Bibitem{Mag11}
\by A.~N.~Magazinov
\paper The family of bi-Lipschitz classes of Delone sets in Euclidean space has the cardinality of the continuum
\inbook Classical and modern mathematics in the wake of Boris Nikolaevich Delone
\bookinfo Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 275
\pages 87--98
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3341}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962972}
\elib{https://elibrary.ru/item.asp?id=17238817}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 275
\pages 78--89
\crossref{https://doi.org/10.1134/S0081543811080050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305482400005}
\elib{https://elibrary.ru/item.asp?id=18034688}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856463512}
Linking options:
https://www.mathnet.ru/eng/tm3341
https://www.mathnet.ru/eng/tm/v275/p87
This publication is cited in the following 9 articles:
Michael Dymond, Vojtěch Kaluža, “Divergence of separated nets with respect to displacement equivalence”, Geom Dedicata, 218:1 (2024)
Michael Dymond, Vojtěch Kaluža, “Highly irregular separated nets”, Isr. J. Math., 253:2 (2023), 501
Smilansky Y., Solomon Ya., “A Dichotomy For Bounded Displacement Equivalence of Delone Sets”, Ergod. Theory Dyn. Syst., 42:8 (2022), 2693–2710
Yotam Smilansky, Yaar Solomon, “Discrepancy and rectifiability of almost linearly repetitive Delone sets”, Nonlinearity, 35:12 (2022), 6204
Frettloeh D., Smilansky Y., Solomon Ya., “Bounded Displacement Non-Equivalence Insubstitution Tilings”, J. Comb. Theory Ser. A, 177 (2021), 105326
Solomon Ya., “Continuously Many Bounded Displacement Non-Equivalences in Substitution Tiling Spaces”, J. Math. Anal. Appl., 492:1 (2020), 124426
Dymond M., Kaluza V., Kopecka E., “Mapping N Grid Points Onto a Square Forces An Arbitrarily Large Lipschitz Constant”, Geom. Funct. Anal., 28:3 (2018), 589–644
Dymarz T., Kelly M., Li S., Lukyanenko A., “Separated Nets in Nilpotent Groups”, Indiana Univ. Math. J., 67:3 (2018), 1143–1183
Isabel Cortez M., Navas A., “Some examples of repetitive, nonrectifiable Delone sets”, Geom. Topol., 20:4 (2016), 1909–1939