Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 275, Pages 68–86 (Mi tm3342)  

This article is cited in 3 scientific papers (total in 3 papers)

Delaunay and Voronoi polytopes of the root lattice $E_7$ and of the dual lattice $E_7^*$

V. P. Grishukhin

Central Economics and Mathematics Institute, RAS, Moscow, Russia
Full-text PDF (303 kB) Citations (3)
References:
Abstract: We give a detailed geometrically clear description of all faces of the Delaunay and Voronoi polytopes of the root lattice $E_7$ and the dual lattice $E_7^*$. Here three uniform polytopes related to the Coxeter–Dynkin diagram of the Lie algebra $E_7$ play a special role. These are the Gosset polytope $P_\mathrm{Gos}=3_{21}$, which is a Delaunay polytope, the contact polytope $2_{31}$ (both for the lattice $E_7$), and the Voronoi polytope $P_\mathrm V(E_7^*)=1_{32}$ of the dual lattice $E_7^*$. This paper can be considered as an illustration of the methods for studying Delaunay and Voronoi polytopes.
Received in May 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 275, Pages 60–77
DOI: https://doi.org/10.1134/S0081543811080049
Bibliographic databases:
Document Type: Article
UDC: 511.9
Language: Russian
Citation: V. P. Grishukhin, “Delaunay and Voronoi polytopes of the root lattice $E_7$ and of the dual lattice $E_7^*$”, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth, Trudy Mat. Inst. Steklova, 275, MAIK Nauka/Interperiodica, Moscow, 2011, 68–86; Proc. Steklov Inst. Math., 275 (2011), 60–77
Citation in format AMSBIB
\Bibitem{Gri11}
\by V.~P.~Grishukhin
\paper Delaunay and Voronoi polytopes of the root lattice $E_7$ and of the dual lattice~$E_7^*$
\inbook Classical and modern mathematics in the wake of Boris Nikolaevich Delone
\bookinfo Collected papers. In commemoration of the 120th anniversary of Boris Nikolaevich Delone's birth
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 275
\pages 68--86
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3342}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962971}
\elib{https://elibrary.ru/item.asp?id=17238816}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 275
\pages 60--77
\crossref{https://doi.org/10.1134/S0081543811080049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305482400004}
\elib{https://elibrary.ru/item.asp?id=18034792}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856545723}
Linking options:
  • https://www.mathnet.ru/eng/tm3342
  • https://www.mathnet.ru/eng/tm/v275/p68
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :110
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024