Abstract:
We establish a relationship between a path integral representation of the heat kernel and the construction of a fundamental solution to a diffusion-type equation by the parametrix method; this relationship is used to find the coefficients of a short-time asymptotic expansion of the heat kernel. We extend the approach proposed to the case of diffusion with drift and obtain two-sided estimates for the regularized trace of the corresponding evolution semigroup.
Citation:
S. A. Stepin, “Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup”, Differential equations and topology. II, Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 271, MAIK Nauka/Interperiodica, Moscow, 2010, 241–258; Proc. Steklov Inst. Math., 271 (2010), 228–245
\Bibitem{Ste10}
\by S.~A.~Stepin
\paper Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup
\inbook Differential equations and topology.~II
\bookinfo Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 271
\pages 241--258
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2847768}
\elib{https://elibrary.ru/item.asp?id=15524644}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 271
\pages 228--245
\crossref{https://doi.org/10.1134/S0081543810040176}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287921200017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952231036}
Linking options:
https://www.mathnet.ru/eng/tm3245
https://www.mathnet.ru/eng/tm/v271/p241
This publication is cited in the following 1 articles:
S. A. Stepin, “Kernel estimates and the regularized trace of the semigroup generated by a potential perturbation of the bi-Laplacian”, Russian Math. Surveys, 66:3 (2011), 635–636