Abstract:
We consider optimal control problems with fixed final time and terminal–integral cost functional, and address the question of constructing a grid optimal synthesis (a universal feedback) on the basis of classical characteristics of the Bellman equation. To construct an optimal synthesis, we propose a numerical algorithm that relies on the necessary optimality conditions (the Pontryagin maximum principle) and sufficient conditions in the Hamiltonian form. We obtain estimates for the efficiency of the numerical method. The method is illustrated by an example of the numerical solution of a nonlinear optimal control problem.
Citation:
N. N. Subbotina, T. B. Tokmantsev, “Classical characteristics of the Bellman equation in constructions of grid optimal synthesis”, Differential equations and topology. II, Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 271, MAIK Nauka/Interperiodica, Moscow, 2010, 259–277; Proc. Steklov Inst. Math., 271 (2010), 246–264
\Bibitem{SubTok10}
\by N.~N.~Subbotina, T.~B.~Tokmantsev
\paper Classical characteristics of the Bellman equation in constructions of grid optimal synthesis
\inbook Differential equations and topology.~II
\bookinfo Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 271
\pages 259--277
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2847769}
\elib{https://elibrary.ru/item.asp?id=15524645}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 271
\pages 246--264
\crossref{https://doi.org/10.1134/S0081543810040188}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287921200018}
\elib{https://elibrary.ru/item.asp?id=16975075}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952204695}
Linking options:
https://www.mathnet.ru/eng/tm3229
https://www.mathnet.ru/eng/tm/v271/p259
This publication is cited in the following 5 articles:
N. N. Subbotina, T. B. Tokmantsev, E. A. Krupennikov, “On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method”, Proc. Steklov Inst. Math., 291 (2015), 253–262
N. N. Subbotina, T. B. Tokmantsev, “A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data”, Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 173–189
I. E. Egorov, “Obobschenie metoda kharakteristik Koshi dlya postroeniya gladkikh reshenii uravneniya Gamiltona-Yakobi-Bellmana v zadachakh optimalnogo upravleniya s osobymi rezhimami”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 2014, no. 3, 30–39
I. Ye. Yegorov, “Generalization of Cauchy's characteristics method to construct smooth solutions to Hamilton-Jacobi-Bellman equations in optimal control problems with singular regimes”, MoscowUniv.Comput.Math.Cybern., 38:3 (2014), 118
Tokmantsev T.B., “Differentsialnye vklyucheniya v konstruktsiyakh setochnogo optimalnogo sinteza”, Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 16:4 (2011), 1194–1196