Abstract:
Let Mn be a closed orientable manifold of dimension n>3. We study the class G1(Mn) of orientation-preserving Morse–Smale diffeomorphisms of Mn such that the set of unstable separatrices of any f∈G1(Mn) is one-dimensional and does not contain heteroclinic intersections. We prove that the Peixoto graph (equipped with an automorphism) is a complete topological invariant for diffeomorphisms of class G1(Mn), and construct a standard representative for any class of topologically conjugate diffeomorphisms.
Citation:
V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “Classification of Morse–Smale diffeomorphisms with one-dimensional set of unstable separatrices”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 270, MAIK Nauka/Interperiodica, Moscow, 2010, 62–85; Proc. Steklov Inst. Math., 270 (2010), 57–79
\Bibitem{GriGurMed10}
\by V.~Z.~Grines, E.~Ya.~Gurevich, V.~S.~Medvedev
\paper Classification of Morse--Smale diffeomorphisms with one-dimensional set of unstable separatrices
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 270
\pages 62--85
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3025}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768937}
\zmath{https://zbmath.org/?q=an:1226.37012}
\elib{https://elibrary.ru/item.asp?id=15249750}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 270
\pages 57--79
\crossref{https://doi.org/10.1134/S0081543810030053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282431700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957372637}
Linking options:
https://www.mathnet.ru/eng/tm3025
https://www.mathnet.ru/eng/tm/v270/p62
This publication is cited in the following 18 articles:
V. Medvedev, E. Zhuzhoma, “High-dimensional Morse-Smale systems with king-saddles”, Topology and its Applications, 312 (2022), 108080
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “On Embedding of the Morse–Smale Diffeomorphisms in a Topological Flow”, J Math Sci, 265:6 (2022), 868
V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “On Realization of Topological Conjugacy Classes of Morse–Smale Cascades on the Sphere Sn”, Proc. Steklov Inst. Math., 310 (2020), 108–123
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “O vklyuchenii diffeomorfizmov Morsa—Smeila v topologicheskii potok”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 160–181
Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin, “On Topological Classification of Gradient-like Flows on an n-sphere in the Sense of Topological Conjugacy”, Regul. Chaotic Dyn., 25:6 (2020), 716–728
Grines V. Gurevich E. Pochinka O. Malyshev D., “On Topological Classification of Morse-Smale Diffeomorphisms on the Sphere S-N (N > 3)”, Nonlinearity, 33:12 (2020), 7088–7113
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “A Combinatorial Invariant of Morse–Smale Diffeomorphisms without Heteroclinic Intersections on the Sphere Sn, n⩾4”, Math. Notes, 105:1 (2019), 132–136
V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russian Math. Surveys, 74:1 (2019), 37–110
V. Grines, E. Gurevich, O. Pochinka, “On embedding of multidimensional Morse–Smale diffeomorphisms into topological flows”, Mosc. Math. J., 19:4 (2019), 739–760
Pochinka V O., Galkina S.Yu., Shubin D.D., “Modeling of Gradient-Like Flows on N-Sphere”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 27:6 (2019), 63–72
V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “An Analog of Smale's Theorem for Homeomorphisms with Regular Dynamics”, Math. Notes, 102:4 (2017), 569–574
E. V. Nozdrinova, “Suschestvovanie svyaznogo kharakteristicheskogo prostranstva u gradientno-podobnykh diffeomorfizmov poverkhnostei”, Zhurnal SVMO, 19:2 (2017), 91–97
Vyacheslav Z. Grines, Dmitry S. Malyshev, Olga V. Pochinka, Svetlana Kh. Zinina, “Efficient Algorithms for the Recognition of Topologically Conjugate Gradient-like Diffeomorhisms”, Regul. Chaotic Dyn., 21:2 (2016), 189–203
V. Z. Grines, E. V. Zhuzhoma, O. V. Pochinka, “Sistemy Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 61, RUDN, M., 2016, 5–40
E. Ya. Gurevich, D. S. Malyshev, “O topologicheskoi klassifikatsii diffeomorfizmov Morsa-Smeila na sfere Sn posredstvom raskrashennogo grafa”, Zhurnal SVMO, 18:4 (2016), 30–33
V. Z. Grines, E. A. Gurevich, O. V. Pochinka, “Topological Classification of Morse–Smale Diffeomorphisms Without Heteroclinic Intersections”, J Math Sci, 208:1 (2015), 81
V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “Embedding in a Flow of Morse–Smale Diffeomorphisms on Manifolds of Dimension Higher than Two”, Math. Notes, 91:5 (2012), 742–745
V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “On embedding a Morse-Smale diffeomorphism on a 3-manifold in a topological flow”, Sb. Math., 203:12 (2012), 1761–1784