Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 270, Pages 62–85 (Mi tm3025)  

This article is cited in 18 scientific papers (total in 18 papers)

Classification of Morse–Smale diffeomorphisms with one-dimensional set of unstable separatrices

V. Z. Grinesa, E. Ya. Gurevicha, V. S. Medvedevb

a Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
b Research Institute for Applied Mathematics and Cybernetics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
References:
Abstract: Let Mn be a closed orientable manifold of dimension n>3. We study the class G1(Mn) of orientation-preserving Morse–Smale diffeomorphisms of Mn such that the set of unstable separatrices of any fG1(Mn) is one-dimensional and does not contain heteroclinic intersections. We prove that the Peixoto graph (equipped with an automorphism) is a complete topological invariant for diffeomorphisms of class G1(Mn), and construct a standard representative for any class of topologically conjugate diffeomorphisms.
Received in April 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 270, Pages 57–79
DOI: https://doi.org/10.1134/S0081543810030053
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “Classification of Morse–Smale diffeomorphisms with one-dimensional set of unstable separatrices”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 270, MAIK Nauka/Interperiodica, Moscow, 2010, 62–85; Proc. Steklov Inst. Math., 270 (2010), 57–79
Citation in format AMSBIB
\Bibitem{GriGurMed10}
\by V.~Z.~Grines, E.~Ya.~Gurevich, V.~S.~Medvedev
\paper Classification of Morse--Smale diffeomorphisms with one-dimensional set of unstable separatrices
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 270
\pages 62--85
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3025}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768937}
\zmath{https://zbmath.org/?q=an:1226.37012}
\elib{https://elibrary.ru/item.asp?id=15249750}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 270
\pages 57--79
\crossref{https://doi.org/10.1134/S0081543810030053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282431700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957372637}
Linking options:
  • https://www.mathnet.ru/eng/tm3025
  • https://www.mathnet.ru/eng/tm/v270/p62
  • This publication is cited in the following 18 articles:
    1. V. Medvedev, E. Zhuzhoma, “High-dimensional Morse-Smale systems with king-saddles”, Topology and its Applications, 312 (2022), 108080  crossref
    2. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “On Embedding of the Morse–Smale Diffeomorphisms in a Topological Flow”, J Math Sci, 265:6 (2022), 868  crossref
    3. V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “On Realization of Topological Conjugacy Classes of Morse–Smale Cascades on the Sphere Sn”, Proc. Steklov Inst. Math., 310 (2020), 108–123  mathnet  crossref  crossref  mathscinet  isi  elib
    4. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “O vklyuchenii diffeomorfizmov Morsa—Smeila v topologicheskii potok”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 160–181  mathnet  crossref
    5. Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin, “On Topological Classification of Gradient-like Flows on an n-sphere in the Sense of Topological Conjugacy”, Regul. Chaotic Dyn., 25:6 (2020), 716–728  mathnet  crossref  mathscinet
    6. Grines V. Gurevich E. Pochinka O. Malyshev D., “On Topological Classification of Morse-Smale Diffeomorphisms on the Sphere S-N (N > 3)”, Nonlinearity, 33:12 (2020), 7088–7113  crossref  mathscinet  isi
    7. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “A Combinatorial Invariant of Morse–Smale Diffeomorphisms without Heteroclinic Intersections on the Sphere Sn, n4”, Math. Notes, 105:1 (2019), 132–136  mathnet  crossref  crossref  mathscinet  isi  elib
    8. V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russian Math. Surveys, 74:1 (2019), 37–110  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. V. Grines, E. Gurevich, O. Pochinka, “On embedding of multidimensional Morse–Smale diffeomorphisms into topological flows”, Mosc. Math. J., 19:4 (2019), 739–760  mathnet  crossref
    10. Pochinka V O., Galkina S.Yu., Shubin D.D., “Modeling of Gradient-Like Flows on N-Sphere”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 27:6 (2019), 63–72  crossref  isi
    11. V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “An Analog of Smale's Theorem for Homeomorphisms with Regular Dynamics”, Math. Notes, 102:4 (2017), 569–574  mathnet  crossref  crossref  mathscinet  isi  elib
    12. E. V. Nozdrinova, “Suschestvovanie svyaznogo kharakteristicheskogo prostranstva u gradientno-podobnykh diffeomorfizmov poverkhnostei”, Zhurnal SVMO, 19:2 (2017), 91–97  mathnet  crossref  elib
    13. Vyacheslav Z. Grines, Dmitry S. Malyshev, Olga V. Pochinka, Svetlana Kh. Zinina, “Efficient Algorithms for the Recognition of Topologically Conjugate Gradient-like Diffeomorhisms”, Regul. Chaotic Dyn., 21:2 (2016), 189–203  mathnet  crossref  mathscinet
    14. V. Z. Grines, E. V. Zhuzhoma, O. V. Pochinka, “Sistemy Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 61, RUDN, M., 2016, 5–40  mathnet
    15. E. Ya. Gurevich, D. S. Malyshev, “O topologicheskoi klassifikatsii diffeomorfizmov Morsa-Smeila na sfere Sn posredstvom raskrashennogo grafa”, Zhurnal SVMO, 18:4 (2016), 30–33  mathnet  elib
    16. V. Z. Grines, E. A. Gurevich, O. V. Pochinka, “Topological Classification of Morse–Smale Diffeomorphisms Without Heteroclinic Intersections”, J Math Sci, 208:1 (2015), 81  crossref
    17. V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “Embedding in a Flow of Morse–Smale Diffeomorphisms on Manifolds of Dimension Higher than Two”, Math. Notes, 91:5 (2012), 742–745  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    18. V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “On embedding a Morse-Smale diffeomorphism on a 3-manifold in a topological flow”, Sb. Math., 203:12 (2012), 1761–1784  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:483
    Full-text PDF :199
    References:104
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025