Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 270, Pages 233–242 (Mi tm3017)  

Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations

A. G. Sergeev

Steklov Institute of Mathematics, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We study an adiabatic limit in $(2+1)$-dimensional hyperbolic Ginzburg–Landau equations and 4-dimensional symplectic Seiberg–Witten equations. In dimension $3=2+1$ the limiting procedure establishes a correspondence between solutions of Ginzburg–Landau equations and adiabatic paths in the moduli space of static solutions, called vortices. The 4-dimensional adiabatic limit may be considered as a complexification of the $(2+1)$-dimensional procedure with time variable being “complexified.” The adiabatic limit in dimension $4=2+2$ establishes a correspondence between solutions of Seiberg–Witten equations and pseudoholomorphic paths in the moduli space of vortices.
Received in November 2008
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 270, Pages 230–239
DOI: https://doi.org/10.1134/S0081543810030181
Bibliographic databases:
Document Type: Article
UDC: 514.763.43+514.83
Language: Russian
Citation: A. G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 270, MAIK Nauka/Interperiodica, Moscow, 2010, 233–242; Proc. Steklov Inst. Math., 270 (2010), 230–239
Citation in format AMSBIB
\Bibitem{Ser10}
\by A.~G.~Sergeev
\paper Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 270
\pages 233--242
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768950}
\zmath{https://zbmath.org/?q=an:1236.35180}
\elib{https://elibrary.ru/item.asp?id=15249763}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 270
\pages 230--239
\crossref{https://doi.org/10.1134/S0081543810030181}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282431700018}
\elib{https://elibrary.ru/item.asp?id=16975731}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957339833}
Linking options:
  • https://www.mathnet.ru/eng/tm3017
  • https://www.mathnet.ru/eng/tm/v270/p233
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :64
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024