Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 270, Pages 243–248 (Mi tm3015)  

Microlocal normal forms for regular fully nonlinear two-dimensional control systems

Ulysse Serres

Université de Lyon, Université Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie dEs Procédés, UMR CNRS 5007, Villeurbanne Cedex, France
References:
Abstract: In the present paper we deal with fully nonlinear two-dimensional smooth control systems with scalar input $\dot q=\mathbf f(q,u)$, $q\in M$, $u\in U$, where $M$ and $U$ are differentiable smooth manifolds of respective dimensions two and one. For such systems, we provide two microlocal normal forms, i.e., local in the state-input space, using the fundamental necessary condition of optimality for optimal control problems: the Pontryagin maximum principle. One of these normal forms will be constructed around a regular extremal, and the other one will be constructed around an abnormal extremal. These normal forms, which in both cases are parametrized only by one scalar function of three variables, lead to a nice expression for the control curvature of the system. This expression shows that the control curvature, a priori defined for normal extremals, can be smoothly extended to abnormals.
Received in April 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 270, Pages 240–245
DOI: https://doi.org/10.1134/S0081543810030193
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: English
Citation: Ulysse Serres, “Microlocal normal forms for regular fully nonlinear two-dimensional control systems”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 270, MAIK Nauka/Interperiodica, Moscow, 2010, 243–248; Proc. Steklov Inst. Math., 270 (2010), 240–245
Citation in format AMSBIB
\Bibitem{Ser10}
\by Ulysse~Serres
\paper Microlocal normal forms for regular fully nonlinear two-dimensional control systems
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 270
\pages 243--248
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768951}
\zmath{https://zbmath.org/?q=an:1213.49030}
\elib{https://elibrary.ru/item.asp?id=15249764}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 270
\pages 240--245
\crossref{https://doi.org/10.1134/S0081543810030193}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282431700019}
\elib{https://elibrary.ru/item.asp?id=17130791}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957355184}
Linking options:
  • https://www.mathnet.ru/eng/tm3015
  • https://www.mathnet.ru/eng/tm/v270/p243
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :44
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024