Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 269, Pages 63–70 (Mi tm2892)  

This article is cited in 1 scientific paper (total in 1 paper)

On a grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions

E. A. Volkov

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (165 kB) Citations (1)
References:
Abstract: We study the Dirichlet problem for the Laplace equation in an infinite rectangular cylinder. Under the assumption that the boundary values are continuous and bounded, we prove the existence and uniqueness of a solution to the Dirichlet problem in the class of bounded functions that are continuous on the closed infinite cylinder. Under an additional assumption that the boundary values are twice continuously differentiable on the faces of the infinite cylinder and are periodic in the direction of its edges, we establish that a periodic solution of the Dirichlet problem has continuous and bounded pure second-order derivatives on the closed infinite cylinder except its edges. We apply the grid method in order to find an approximate periodic solution of this Dirichlet problem. Under the same conditions providing a low smoothness of the exact solution, the convergence rate of the grid solution of the Dirichlet problem in the uniform metric is shown to be on the order of $O(h^2\ln h^{-1})$, where $h$ is the step of a cubic grid.
Received in November 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 269, Pages 57–64
DOI: https://doi.org/10.1134/S0081543810020057
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: E. A. Volkov, “On a grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions”, Function theory and differential equations, Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday, Trudy Mat. Inst. Steklova, 269, MAIK Nauka/Interperiodica, Moscow, 2010, 63–70; Proc. Steklov Inst. Math., 269 (2010), 57–64
Citation in format AMSBIB
\Bibitem{Vol10}
\by E.~A.~Volkov
\paper On a~grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions
\inbook Function theory and differential equations
\bookinfo Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 269
\pages 63--70
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2892}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2729973}
\zmath{https://zbmath.org/?q=an:1205.65296}
\elib{https://elibrary.ru/item.asp?id=15109751}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 269
\pages 57--64
\crossref{https://doi.org/10.1134/S0081543810020057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281705900005}
\elib{https://elibrary.ru/item.asp?id=15337096}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956644894}
Linking options:
  • https://www.mathnet.ru/eng/tm2892
  • https://www.mathnet.ru/eng/tm/v269/p63
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024