Abstract:
We address the problem of optimal reconstruction of the values of a linear operator on Rd or Zd from approximate values of other operators. Each operator acts as the multiplication of the Fourier transform by a certain function. As an application, we present explicit expressions for optimal methods of reconstructing the solution of the heat equation (for continuous and difference models) at a given instant of time from inaccurate measurements of this solution at other time instants.
Citation:
G. G. Magaril-Il'yaev, K. Yu. Osipenko, “On the reconstruction of convolution-type operators from inaccurate information”, Function theory and differential equations, Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday, Trudy Mat. Inst. Steklova, 269, MAIK Nauka/Interperiodica, Moscow, 2010, 181–192; Proc. Steklov Inst. Math., 269 (2010), 174–185
\Bibitem{MagOsi10}
\by G.~G.~Magaril-Il'yaev, K.~Yu.~Osipenko
\paper On the reconstruction of convolution-type operators from inaccurate information
\inbook Function theory and differential equations
\bookinfo Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 269
\pages 181--192
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2893}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2729983}
\zmath{https://zbmath.org/?q=an:1209.47035}
\elib{https://elibrary.ru/item.asp?id=15109761}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 269
\pages 174--185
\crossref{https://doi.org/10.1134/S008154381002015X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281705900015}
\elib{https://elibrary.ru/item.asp?id=15333279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956620358}
Linking options:
https://www.mathnet.ru/eng/tm2893
https://www.mathnet.ru/eng/tm/v269/p181
This publication is cited in the following 12 articles:
E. V. Abramova, E. O. Sivkova, “O nailuchshem vosstanovlenii semeistva operatorov na klasse funktsii po netochno zadannomu ikh spektru”, Vladikavk. matem. zhurn., 26:1 (2024), 13–26
G. G. Magaril-Il'yaev, E. O. Sivkova, “Optimal recovery of semi-group operators from inaccurate data”, Eurasian Math. J., 10:4 (2019), 75–84
E. V. Abramova, “Nailuchshee vosstanovlenie resheniya zadachi Dirikhle po netochno zadannomu spektru granichnoi funktsii”, Vladikavk. matem. zhurn., 19:4 (2017), 3–12
E. V. Abramova, “Vosstanovlenie resheniya zadachi Dirikhle po netochnym granichnym dannym”, Vladikavk. matem. zhurn., 17:1 (2015), 3–13
Bagramyan T.E., “on a Problem of Optimal Recovery and Kolmogorov Type Inequalities on An Interval”, J. Approx. Theory, 189 (2015), 160–169
T. È. Bagramyan, “Optimal Recovery of Harmonic Functions in the Ball from Inaccurate Information on the Radon Transform”, Math. Notes, 98:2 (2015), 195–203
Zhang Y., Lukyanenko D.V., Yagola A.G., “An Optimal Regularization Method For Convolution Equations on the Sourcewise Represented Set”, J. Inverse Ill-Posed Probl., 23:5 (2015), 465–475
G. G. Magaril-Il'yaev, K. Yu. Osipenko, “On the best methods for recovering derivatives in Sobolev classes”, Izv. Math., 78:6 (2014), 1138–1157
G. G. Magaril-Il'yaev, K. Yu. Osipenko, E. O. Sivkova, “The best approximation of a set whose elements are known approximately”, J. Math. Sci., 218:5 (2016), 636–646
Bagramyan T.E., “Optimalnoe vosstanovlenie funktsii po netochno zadannomu preobrazovaniyu radona na klassakh, zadavaemykh stepenyu operatora laplasa”, Vestnik rossiiskogo universiteta druzhby narodov. seriya: matematika, informatika, fizika, 2013, no. 1, 19–25
G. G. Magaril-Il'yaev, K. Yu. Osipenko, “On Optimal Recovery of Solutions to Difference Equations from Inaccurate Data”, J Math Sci, 189:4 (2013), 596
T. E. Bagramyan, “Optimalnoe vosstanovlenie garmonicheskoi funktsii po netochno zadannym znacheniyam operatora radialnogo integrirovaniya”, Vladikavk. matem. zhurn., 14:1 (2012), 22–36