Abstract:
We address the problem of optimal reconstruction of the values of a linear operator on $\mathbb R^d$ or $\mathbb Z^d$ from approximate values of other operators. Each operator acts as the multiplication of the Fourier transform by a certain function. As an application, we present explicit expressions for optimal methods of reconstructing the solution of the heat equation (for continuous and difference models) at a given instant of time from inaccurate measurements of this solution at other time instants.
Citation:
G. G. Magaril-Il'yaev, K. Yu. Osipenko, “On the reconstruction of convolution-type operators from inaccurate information”, Function theory and differential equations, Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday, Trudy Mat. Inst. Steklova, 269, MAIK Nauka/Interperiodica, Moscow, 2010, 181–192; Proc. Steklov Inst. Math., 269 (2010), 174–185
\Bibitem{MagOsi10}
\by G.~G.~Magaril-Il'yaev, K.~Yu.~Osipenko
\paper On the reconstruction of convolution-type operators from inaccurate information
\inbook Function theory and differential equations
\bookinfo Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 269
\pages 181--192
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2893}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2729983}
\zmath{https://zbmath.org/?q=an:1209.47035}
\elib{https://elibrary.ru/item.asp?id=15109761}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 269
\pages 174--185
\crossref{https://doi.org/10.1134/S008154381002015X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281705900015}
\elib{https://elibrary.ru/item.asp?id=15333279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956620358}
Linking options:
https://www.mathnet.ru/eng/tm2893
https://www.mathnet.ru/eng/tm/v269/p181
This publication is cited in the following 12 articles: