Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 269, Pages 193–203 (Mi tm2905)  

This article is cited in 5 scientific papers (total in 5 papers)

On Riemann “nondifferentiable” function and Schrödinger equation

K. I. Oskolkova, M. A. Chakhkievb

a Department of Mathematics, University of South Carolina, Columbia, USA
b Russian State Social University, Moscow, Russia
Full-text PDF (239 kB) Citations (5)
References:
Abstract: The function $\psi:=\sum_{n\in\mathbb Z\setminus\{0\}}e^{\pi i(tn^2+2xn)}/(\pi in^2)$, $\{t,x\}\in\mathbb R^2$, is studied as a (generalized) solution of the Cauchy initial value problem for the Schrödinger equation. The real part of the restriction of $\psi$ on the line $x=0$, that is, the function $R:=\operatorname{Re}\psi|_{x=0}=\frac2\pi\sum_{n\in\mathbb N}\frac{\sin\pi n^2t}{n^2}$, $t\in\mathbb R$, was suggested by B. Riemann as a plausible example of a continuous but nowhere differentiable function. The points are established on $\mathbb R^2$ where the partial derivative $\frac{\partial\psi}{\partial t}$ exists and equals $-1$. These points constitute a countable set of open intervals parallel to the $x$-axis, with rational values of $t$. Thereby a natural extension of the well-known results of G. H. Hardy and J. Gerver is obtained (Gerver established that the derivative of the function $R$ still does exist and equals $-1$ at each rational point of the type $t=\frac aq$ where both numbers $a$ and $q$ are odd). A basic role is played by a representation of the differences of the function $\psi$ via Poisson's summation formula and the oscillatory Fresnel integral. It is also proved that the number $\frac34$ is the sharp value of the Lipschitz–Hölder exponent of the function $\psi$ in the variable $t$ almost everywhere on $\mathbb R^2$.
Received in February 2010
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 269, Pages 186–196
DOI: https://doi.org/10.1134/S0081543810020161
Bibliographic databases:
Document Type: Article
UDC: 517.51+511.3
Language: Russian
Citation: K. I. Oskolkov, M. A. Chakhkiev, “On Riemann “nondifferentiable” function and Schrödinger equation”, Function theory and differential equations, Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday, Trudy Mat. Inst. Steklova, 269, MAIK Nauka/Interperiodica, Moscow, 2010, 193–203; Proc. Steklov Inst. Math., 269 (2010), 186–196
Citation in format AMSBIB
\Bibitem{OskCha10}
\by K.~I.~Oskolkov, M.~A.~Chakhkiev
\paper On Riemann ``nondifferentiable'' function and Schr\"odinger equation
\inbook Function theory and differential equations
\bookinfo Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 269
\pages 193--203
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2905}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2729984}
\zmath{https://zbmath.org/?q=an:1207.26010}
\elib{https://elibrary.ru/item.asp?id=15109762}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 269
\pages 186--196
\crossref{https://doi.org/10.1134/S0081543810020161}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281705900016}
\elib{https://elibrary.ru/item.asp?id=15335173}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956634739}
Linking options:
  • https://www.mathnet.ru/eng/tm2905
  • https://www.mathnet.ru/eng/tm/v269/p193
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024