Abstract:
The topological classification is discussed for real polynomials of degree 4 in two real independent variables whose critical points and critical values are all different. It is proved that among the 17746 topological types of smooth functions with the same number of critical points, at most 426 types are realizable by polynomials of degree 4.
Citation:
V. I. Arnold, “Topological classification of Morse polynomials”, Differential equations and topology. I, Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 268, MAIK Nauka/Interperiodica, Moscow, 2010, 40–55; Proc. Steklov Inst. Math., 268 (2010), 32–48
\Bibitem{Arn10}
\by V.~I.~Arnold
\paper Topological classification of Morse polynomials
\inbook Differential equations and topology.~I
\bookinfo Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 268
\pages 40--55
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2866}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2724333}
\zmath{https://zbmath.org/?q=an:1214.57026}
\elib{https://elibrary.ru/item.asp?id=13726632}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 268
\pages 32--48
\crossref{https://doi.org/10.1134/S0081543810010049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277345600004}
\elib{https://elibrary.ru/item.asp?id=15332216}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952250451}
Linking options:
https://www.mathnet.ru/eng/tm2866
https://www.mathnet.ru/eng/tm/v268/p40
This publication is cited in the following 3 articles:
M. V. Meshcheryakov, “Classification of taut irreducible real linear representations of compact connected Lie groups”, St. Petersburg Math. J., 32:1 (2021), 31–38
Maksymenko S., “Deformations of Functions on Surfaces By Isotopic to the Identity Diffeomorphisms”, Topology Appl., 282 (2020), 107312
E. A. Kudryavtseva, “On the homotopy type of spaces of Morse functions on surfaces”, Sb. Math., 204:1 (2013), 75–113