Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 268, Pages 24–39 (Mi tm2872)  

This article is cited in 2 scientific papers (total in 2 papers)

Well-posed infinite horizon variational problems on a compact manifold

A. A. Agrachevab

a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
b SISSA/ISAS, Trieste, Italy
Full-text PDF (273 kB) Citations (2)
References:
Abstract: We give an effective sufficient condition for a variational problem with infinite horizon on a compact Riemannian manifold $M$ to admit a smooth optimal synthesis, i.e., a smooth dynamical system on $M$ whose positive semi-trajectories are solutions to the problem. To realize the synthesis, we construct an invariant Lagrangian submanifold (well-projected to $M$) of the flow of extremals in the cotangent bundle $T^*M$. The construction uses the curvature of the flow in the cotangent bundle and some ideas of hyperbolic dynamics.
Received in June 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 268, Pages 17–31
DOI: https://doi.org/10.1134/S0081543810010037
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: Russian
Citation: A. A. Agrachev, “Well-posed infinite horizon variational problems on a compact manifold”, Differential equations and topology. I, Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 268, MAIK Nauka/Interperiodica, Moscow, 2010, 24–39; Proc. Steklov Inst. Math., 268 (2010), 17–31
Citation in format AMSBIB
\Bibitem{Agr10}
\by A.~A.~Agrachev
\paper Well-posed infinite horizon variational problems on a~compact manifold
\inbook Differential equations and topology.~I
\bookinfo Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 268
\pages 24--39
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2872}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2724332}
\zmath{https://zbmath.org/?q=an:1204.58012}
\elib{https://elibrary.ru/item.asp?id=13726631}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 268
\pages 17--31
\crossref{https://doi.org/10.1134/S0081543810010037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277345600003}
\elib{https://elibrary.ru/item.asp?id=15332222}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952280823}
Linking options:
  • https://www.mathnet.ru/eng/tm2872
  • https://www.mathnet.ru/eng/tm/v268/p24
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :57
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024