|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 267, Pages 266–279
(Mi tm2606)
|
|
|
|
Rigidity of Poisson Structures
L. Stolovitch Laboratoire J.-A. Dieudonné, U. M. R. 6621 du CNRS, Université de Nice–Sophia Antipolis, Nice, France
Abstract:
We study germs of analytic Poisson structures which are suitable perturbations of a quasihomogeneous Poisson structure in a neighborhood of the origin of $\mathbb R^n$ or $\mathbb C^n$, a fixed point of the Poisson structures. We define a “diophantine condition” relative to the quasihomogeneous initial part $\mathcal L$ which ensures that such a good perturbation of $\mathcal L$ which is formally conjugate to $\mathcal L$ is also analytically conjugate to it.
Received in February 2009
Citation:
L. Stolovitch, “Rigidity of Poisson Structures”, Singularities and applications, Collected papers, Trudy Mat. Inst. Steklova, 267, MAIK Nauka/Interperiodica, Moscow, 2009, 266–279; Proc. Steklov Inst. Math., 267 (2009), 256–269
Linking options:
https://www.mathnet.ru/eng/tm2606 https://www.mathnet.ru/eng/tm/v267/p266
|
Statistics & downloads: |
Abstract page: | 317 | Full-text PDF : | 86 | References: | 73 |
|