|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 267, Pages 258–265
(Mi tm2592)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
On Eigenvalues of Rectangular Matrices
B. Shapiroa, M. Shapirob a Department of Mathematics, Stockholm University, Stockholm, Sweden
b Department of Mathematics, Michigan State University, East Lansing, MI, USA
Abstract:
Given a $(k+1)$-tuple $A,B_1,\dots,B_k$ of $m\times n$ matrices with $m\le n$, we call the set of all $k$-tuples of complex numbers $\{\lambda_1,\dots,\lambda_k\}$ such that the linear combination $A+\lambda_1B_1+\lambda_2B_2+\dots+\lambda_kB_k$ has rank smaller than $m$ the eigenvalue locus of the latter pencil. Motivated primarily by applications to multiparameter generalizations of the Heine–Stieltjes spectral problem, we study a number of properties of the eigenvalue locus in the most important case $k=n-m+1$.
Received in July 2008
Citation:
B. Shapiro, M. Shapiro, “On Eigenvalues of Rectangular Matrices”, Singularities and applications, Collected papers, Trudy Mat. Inst. Steklova, 267, MAIK Nauka/Interperiodica, Moscow, 2009, 258–265; Proc. Steklov Inst. Math., 267 (2009), 248–255
Linking options:
https://www.mathnet.ru/eng/tm2592 https://www.mathnet.ru/eng/tm/v267/p258
|
Statistics & downloads: |
Abstract page: | 344 | Full-text PDF : | 94 | References: | 66 |
|