Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 267, Pages 164–181 (Mi tm2597)  

This article is cited in 5 scientific papers (total in 5 papers)

Spacelike Surfaces in Anti de Sitter Four-Space from a Contact Viewpoint

S. Izumiyaa, D. Peib, M. C. Romero Fusterc

a Department of Mathematics, Hokkaido University, Sapporo, Japan
b School of Mathematics and Statistics, Northeast Normal University, Changchun, P. R. China
c Departament de Geometría i Topología, Facultat de Matemàtiques, Universitat de València, Burjassot, València, Spain
Full-text PDF (311 kB) Citations (5)
References:
Abstract: We define the notions of $(S_\mathrm t^1\times S_\mathrm s^2)$-nullcone Legendrian Gauss maps and $S^2_+$-nullcone Lagrangian Gauss maps on spacelike surfaces in anti de Sitter 4-space. We investigate the relationships between singularities of these maps and geometric properties of surfaces as an application of the theory of Legendrian/Lagrangian singularities. By using $S^2_+$-nullcone Lagrangian Gauss maps, we define the notion of $S^2_+$-nullcone Gauss–Kronecker curvatures and show a Gauss–Bonnet type theorem as a global property. We also introduce the notion of horospherical Gauss maps which have geometric properties different from those of the above Gauss maps. As a consequence, we can say that anti de Sitter space has much richer geometric properties than the other space forms such as Euclidean space, hyperbolic space, Lorentz–Minkowski space and de Sitter space.
Received in April 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2009, Volume 267, Pages 156–173
DOI: https://doi.org/10.1134/S0081543809040130
Bibliographic databases:
UDC: 514.74
Language: English
Citation: S. Izumiya, D. Pei, M. C. Romero Fuster, “Spacelike Surfaces in Anti de Sitter Four-Space from a Contact Viewpoint”, Singularities and applications, Collected papers, Trudy Mat. Inst. Steklova, 267, MAIK Nauka/Interperiodica, Moscow, 2009, 164–181; Proc. Steklov Inst. Math., 267 (2009), 156–173
Citation in format AMSBIB
\Bibitem{IzuPeiRom09}
\by S.~Izumiya, D.~Pei, M.~C.~Romero~Fuster
\paper Spacelike Surfaces in Anti de Sitter Four-Space from a~Contact Viewpoint
\inbook Singularities and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 267
\pages 164--181
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2597}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2723948}
\zmath{https://zbmath.org/?q=an:1201.53063}
\elib{https://elibrary.ru/item.asp?id=12989371}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 267
\pages 156--173
\crossref{https://doi.org/10.1134/S0081543809040130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274252700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76049094947}
Linking options:
  • https://www.mathnet.ru/eng/tm2597
  • https://www.mathnet.ru/eng/tm/v267/p164
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :61
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024