Abstract:
We define the notions of (S1t×S2s)-nullcone Legendrian Gauss maps and S2+-nullcone Lagrangian Gauss maps on spacelike surfaces in anti de Sitter 4-space. We investigate the relationships between singularities of these maps and geometric properties of surfaces as an application of the theory of Legendrian/Lagrangian singularities. By using S2+-nullcone Lagrangian Gauss maps, we define the notion of S2+-nullcone Gauss–Kronecker curvatures and show a Gauss–Bonnet type theorem as a global property. We also introduce the notion of horospherical Gauss maps which have geometric properties different from those of the above Gauss maps. As a consequence, we can say that anti de Sitter space has much richer geometric properties than the other space forms such as Euclidean space, hyperbolic space, Lorentz–Minkowski space and de Sitter space.
Citation:
S. Izumiya, D. Pei, M. C. Romero Fuster, “Spacelike Surfaces in Anti de Sitter Four-Space from a Contact Viewpoint”, Singularities and applications, Collected papers, Trudy Mat. Inst. Steklova, 267, MAIK Nauka/Interperiodica, Moscow, 2009, 164–181; Proc. Steklov Inst. Math., 267 (2009), 156–173
\Bibitem{IzuPeiRom09}
\by S.~Izumiya, D.~Pei, M.~C.~Romero~Fuster
\paper Spacelike Surfaces in Anti de Sitter Four-Space from a~Contact Viewpoint
\inbook Singularities and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 267
\pages 164--181
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2597}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2723948}
\zmath{https://zbmath.org/?q=an:1201.53063}
\elib{https://elibrary.ru/item.asp?id=12989371}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 267
\pages 156--173
\crossref{https://doi.org/10.1134/S0081543809040130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274252700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76049094947}
Linking options:
https://www.mathnet.ru/eng/tm2597
https://www.mathnet.ru/eng/tm/v267/p164
This publication is cited in the following 5 articles:
Song X., Pei D., “Geometrical Particles and Dualities Related to Curves in Null de Sitter 3-Sphere”, Int. J. Mod. Phys. A, 36:20 (2021), 2150152
Wei S., Huang J., Chen L., “Singularities of Null Surfaces of Null Cartan Curves in Three-Dimensional Anti-de Sitter Space”, Topology Appl., 234 (2018), 238–247
N. V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups: addendum”, Sib. elektron. matem. izv., 15 (2018), 707–718
Cui X., Pei D., “Singularity Analysis of Lightlike Hypersurfaces of Partially Null Curves”, Singularities in Generic Geometry, Advanced Studies in Pure Mathematics, 78, eds. Izumiya S., Ishikawa G., Yamamoto M., Saji K., Yamamoto T., Takahashi M., Math Soc Japan, 2018, 183–200
Izumiya Sh., “Lightlike Hypersurfaces Along Spacelike Submanifolds in Anti-de Sitter Space”, J. Math. Phys., 56:11 (2015), 112502