Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 267, Pages 146–163 (Mi tm2598)  

Poincaré Series of Klein Groups, Coxeter Polynomials, the Burau Representation, and Milnor Invariants

G. G. Ilyuta

M. A. Sholokhov Moscow State Humanitarian University, Moscow, Russia
References:
Abstract: We obtain several formulas for the Poincaré series defined by B. Kostant for Klein groups (binary polyhedral groups) and some formulas for Coxeter polynomials (characteristic polynomials of monodromy in the case of singularities). Some of these formulas – the generalized Ebeling formula, the Christoffel–Darboux identity, and the combinatorial formula – are corollaries to the well-known statements on the characteristic polynomial of a graph and are analogous to formulas for orthogonal polynomials. The ratios of Poincaré series and Coxeter polynomials are represented in terms of branched continued fractions, which are $q$-analogs of continued fractions that arise in the theory of resolution of singularities and in the Kirby calculus. Other formulas connect the ratios of some Poincaré series and Coxeter polynomials with the Burau representation and Milnor invariants of string links. The results obtained by S. M. Gusein-Zade, F. Delgado, and A. Campillo allow one to consider these facts as statements on the Poincaré series of the rings of functions on the singularities of curves, which suggests the following conjecture: the ratio of the Poincaré series of the rings of functions for close (in the sense of adjacency or position in a series) singularities of curves is determined by the Burau representation or by the Milnor invariants of a string link, which is an intermediate object in the transformation of the knot of one singularity into the knot of the other.
Received in August 2008
English version:
Proceedings of the Steklov Institute of Mathematics, 2009, Volume 267, Pages 139–155
DOI: https://doi.org/10.1134/S0081543809040129
Bibliographic databases:
UDC: 515.162.8+515.164.15
Language: Russian
Citation: G. G. Ilyuta, “Poincaré Series of Klein Groups, Coxeter Polynomials, the Burau Representation, and Milnor Invariants”, Singularities and applications, Collected papers, Trudy Mat. Inst. Steklova, 267, MAIK Nauka/Interperiodica, Moscow, 2009, 146–163; Proc. Steklov Inst. Math., 267 (2009), 139–155
Citation in format AMSBIB
\Bibitem{Ily09}
\by G.~G.~Ilyuta
\paper Poincar\'e Series of Klein Groups, Coxeter Polynomials, the Burau Representation, and Milnor Invariants
\inbook Singularities and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 267
\pages 146--163
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2598}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2723947}
\zmath{https://zbmath.org/?q=an:1251.20010}
\elib{https://elibrary.ru/item.asp?id=12989370}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 267
\pages 139--155
\crossref{https://doi.org/10.1134/S0081543809040129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274252700012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76049093362}
Linking options:
  • https://www.mathnet.ru/eng/tm2598
  • https://www.mathnet.ru/eng/tm/v267/p146
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:324
    Full-text PDF :81
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024