Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 245, Pages 241–250 (Mi tm189)  

Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a Linear Programming Problem

R. A. Roshchin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The aim of the present work is to describe, for a given quantum-mechanical system and a noncommutative) family of observables $A_\nu$, density matrices $\rho$ that possess the following property: In a certain probability space, there exists a family of random variables $\xi _\nu$ such that, for any set of pairwise commuting operators $A_{\nu _1}, A_{\nu _2}, \dots,A_{\nu _n}$, the quantum-mechanical correlation coefficient of observables is equal to the classical correlation coefficient of random variables: $\mathrm {Sp}(\rho A_{\nu _1}A_{\nu _2}\dots A_{\nu _n})=\mathbb E(\xi _{\nu _1}\xi _{\nu _2} \dots \xi _{\nu _n})$. It turns out that the existence of such random variables can be expressed in terms of a solution to a special optimization problem, a linear programming problem. The technique developed allows one to construct an earlier unknown solution to an important specific problem of the classical representation of a correlation function of the form $g\cos (\alpha -\beta )$ as the classical correlation of random processes $\xi _\alpha$ and $\eta _\beta$ such that $|\xi _\alpha| \le 1$ and $|\eta _\beta| \le 1$, in the parameter range ${2}/{\pi }<g\le{1}/{\sqrt {2}}$.
Received in December 2003
Bibliographic databases:
UDC: 519.852.3
Language: Russian
Citation: R. A. Roshchin, “Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a Linear Programming Problem”, Selected topics of $p$-adic mathematical physics and analysis, Collected papers. Dedicated to the 80th birthday of academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 245, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 241–250; Proc. Steklov Inst. Math., 245 (2004), 228–236
Citation in format AMSBIB
\Bibitem{Ros04}
\by R.~A.~Roshchin
\paper Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem
\inbook Selected topics of $p$-adic mathematical physics and analysis
\bookinfo Collected papers. Dedicated to the 80th birthday of academician Vasilii Sergeevich Vladimirov
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 245
\pages 241--250
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2099886}
\zmath{https://zbmath.org/?q=an:1098.81054}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 245
\pages 228--236
Linking options:
  • https://www.mathnet.ru/eng/tm189
  • https://www.mathnet.ru/eng/tm/v245/p241
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :98
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024