|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 245, Pages 251–256
(Mi tm190)
|
|
|
|
An Approach to the Ultrametric Moment Problem
W. H. Schikhof Radboud University Nijmegen
Abstract:
The classical Hausdorff–Widder–Bernstein theorem describes a 1–1 correspondence between probability measures $\mu$ on $[0,1]$ and a class of the so-called completely monotone functions $f$ on $(0,\infty)$ by means of the formula
$f(x)=\int _0^1 s^x\,d\mu(s)$. In the present paper, we establish a non-Archimedean version of this theorem.
Received in October 2003
Citation:
W. H. Schikhof, “An Approach to the Ultrametric Moment Problem”, Selected topics of $p$-adic mathematical physics and analysis, Collected papers. Dedicated to the 80th birthday of academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 245, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 251–256; Proc. Steklov Inst. Math., 245 (2004), 237–242
Linking options:
https://www.mathnet.ru/eng/tm190 https://www.mathnet.ru/eng/tm/v245/p251
|
|