Abstract:
We interpret the previously developed Teichmüller theory of surfaces with marked points on boundary components (bordered surfaces) as the Teichmüller theory of Riemann surfaces with orbifold points of order 2. In the Poincaré uniformization pattern, we describe necessary and sufficient conditions for the group generated by the Fuchsian group of the surface with added inversions to be of the almost hyperbolic Fuchsian type. All the techniques elaborated for the bordered surfaces (quantization, classical and quantum mapping-class group transformations, and Poisson and quantum algebra of geodesic functions) are equally applicable to the surfaces with orbifold points.
Citation:
L. O. Chekhov, “Riemann Surfaces with Orbifold Points”, Geometry, topology, and mathematical physics. II, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 266, MAIK Nauka/Interperiodica, Moscow, 2009, 237–262; Proc. Steklov Inst. Math., 266 (2009), 228–250
\Bibitem{Che09}
\by L.~O.~Chekhov
\paper Riemann Surfaces with Orbifold Points
\inbook Geometry, topology, and mathematical physics.~II
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 266
\pages 237--262
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm1874}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603271}
\zmath{https://zbmath.org/?q=an:1183.30047}
\elib{https://elibrary.ru/item.asp?id=12901688}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 266
\pages 228--250
\crossref{https://doi.org/10.1134/S0081543809030146}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000270722100014}
\elib{https://elibrary.ru/item.asp?id=15312315}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350417096}
Linking options:
https://www.mathnet.ru/eng/tm1874
https://www.mathnet.ru/eng/tm/v266/p237
This publication is cited in the following 8 articles:
Labardini-Fragoso D., Velasco D., “On a Family of Caldero-Chapoton Algebras That Have the Laurent Phenomenon”, J. Algebra, 520 (2019), 90–135
Chekhov L. Mazzocco M., “Colliding Holes in Riemann Surfaces and Quantum Cluster Algebras”, Nonlinearity, 31:1 (2018), 54–107
Chekhov L. Shapiro M., “Teichmüller Spaces of Riemann Surfaces with Orbifold Points of Arbitrary Order and Cluster Variables”, Int. Math. Res. Notices, 2014, no. 10, 2746–2772
Chekhov L. Mazzocco M., “Teichmüller Spaces as Degenerated Symplectic Leaves in Dubrovin-Ugaglia Poisson Manifolds”, Physica D, 241:23-24 (2012), 2109–2121
Chekhov L., Mazzocco M., “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226:6 (2011), 4731–4775
Chekhov L., Mazzocco M., “Shear coordinate description of the quantized versal unfolding of a $D_4$ singularity”, J. Phys. A, 43:44 (2010), 442002, 13 pp.
M. Mazzocco, L. O. Chekhov, “Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions”, Russian Math. Surveys, 64:6 (2009), 1079–1130
Chekhov L.O., “Orbifold Riemann surfaces and geodesic algebras”, J. Phys. A, 42:30 (2009), 304007, 32 pp.