Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 266, Pages 227–236 (Mi tm1876)  

This article is cited in 10 scientific papers (total in 10 papers)

Differential Transformations of Parabolic Second-Order Operators in the Plane

S. P. Tsareva, E. S. Shemyakovab

a Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
b Research Institute for Symbolic Computation, J. Kepler University, Linz, Austria
References:
Abstract: Darboux's classical results about transformations of second-order hyperbolic equations by means of differential substitutions are extended to the case of parabolic equations of the form $Lu=(D^2_x+a(x,y)D_x+b(x,y)D_y+c(x,y))u=0$. We prove a general theorem that provides a way to determine admissible differential substitutions for such parabolic equations. It turns out that higher order transforming operators can always be represented as a composition of first-order operators that define a series of consecutive transformations. The existence of inverse transformations imposes some differential constrains on the coefficients of the initial operator. We show that these constraints may imply famous integrable equations, in particular, the Boussinesq equation.
Received in December 2008
English version:
Proceedings of the Steklov Institute of Mathematics, 2009, Volume 266, Pages 219–227
DOI: https://doi.org/10.1134/S0081543809030134
Bibliographic databases:
UDC: 517.955
Language: Russian
Citation: S. P. Tsarev, E. S. Shemyakova, “Differential Transformations of Parabolic Second-Order Operators in the Plane”, Geometry, topology, and mathematical physics. II, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 266, MAIK Nauka/Interperiodica, Moscow, 2009, 227–236; Proc. Steklov Inst. Math., 266 (2009), 219–227
Citation in format AMSBIB
\Bibitem{TsaShe09}
\by S.~P.~Tsarev, E.~S.~Shemyakova
\paper Differential Transformations of Parabolic Second-Order Operators in the Plane
\inbook Geometry, topology, and mathematical physics.~II
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 266
\pages 227--236
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm1876}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603270}
\zmath{https://zbmath.org/?q=an:1188.35008}
\elib{https://elibrary.ru/item.asp?id=12901687}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 266
\pages 219--227
\crossref{https://doi.org/10.1134/S0081543809030134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000270722100013}
\elib{https://elibrary.ru/item.asp?id=15304636}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350383252}
Linking options:
  • https://www.mathnet.ru/eng/tm1876
  • https://www.mathnet.ru/eng/tm/v266/p227
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:411
    Full-text PDF :61
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024