Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 113–119 (Mi timm968)  

This article is cited in 3 scientific papers (total in 3 papers)

Net rings normalized by a nonsplit maximal torus

N. A. Dzhusoeva

North-Ossetia State University
Full-text PDF (152 kB) Citations (3)
References:
Abstract: We investigate net rings $M(\sigma)$ normalized by a torus $T=T(d)$, which is the image of the multiplicative group of the radical extension $K=k(\sqrt[n]d)$ (of degree $n$ of a field $k$, $char(k)\neq2$) under the regular embedding into $G=GL(n,k)$. It is shown that the structure of these net rings is determined by a certain subring of the ground field $k$. Necessary and sufficient conditions are obtained for the normalizability of a net ring $M(\sigma)$ by the torus $T=T(d)$ for the case when the ground field $k=\mathbb Q$ is the field of rational numbers. We also study transvection modules and factor rings of intermediate subgroups $H$, $T\subseteq H\subseteq G$.
Keywords: net, net ring, nonsplit maximal torus, intermediate subgroup.
Received: 09.01.2013
Bibliographic databases:
Document Type: Article
UDC: 519.46
Language: Russian
Citation: N. A. Dzhusoeva, “Net rings normalized by a nonsplit maximal torus”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 113–119
Citation in format AMSBIB
\Bibitem{Dzh13}
\by N.~A.~Dzhusoeva
\paper Net rings normalized by a~nonsplit maximal torus
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 113--119
\mathnet{http://mi.mathnet.ru/timm968}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3362583}
\elib{https://elibrary.ru/item.asp?id=20234977}
Linking options:
  • https://www.mathnet.ru/eng/timm968
  • https://www.mathnet.ru/eng/timm/v19/i3/p113
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :68
    References:42
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024