Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 104–112 (Mi timm967)  

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints

A. R. Danilinab, N. S. Korobitsynab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University named after B. N. Yeltsin
Full-text PDF (175 kB) Citations (3)
References:
Abstract: An optimal control problem is considered for solutions of a boundary value problem for a second-order ordinary differential equation on a closed interval with a small parameter at the second derivative. The control is scalar and satisfies geometric constraints. General theorems on approximation are obtained. Two leading terms of an asymptotic expansion of the solution are constructed and an error estimate is obtained for these approximations.
Keywords: optimal control, time-optimal problem, asymptotic expansion, singular perturbation problems, small parameter.
Received: 21.03.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 285, Issue 1, Pages S58–S67
DOI: https://doi.org/10.1134/S008154381405006X
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. R. Danilin, N. S. Korobitsyna, “Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 104–112; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S58–S67
Citation in format AMSBIB
\Bibitem{DanKor13}
\by A.~R.~Danilin, N.~S.~Korobitsyna
\paper Asymptotic estimates for a~solution of a~singular perturbation optimal control problem on a~closed interval under geometric constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 104--112
\mathnet{http://mi.mathnet.ru/timm967}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3362582}
\elib{https://elibrary.ru/item.asp?id=20234976}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S58--S67
\crossref{https://doi.org/10.1134/S008154381405006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338337200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903269359}
Linking options:
  • https://www.mathnet.ru/eng/timm967
  • https://www.mathnet.ru/eng/timm/v19/i3/p104
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :109
    References:86
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024