Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 3, Pages 83–93 (Mi timm965)  

This article is cited in 1 scientific paper (total in 1 paper)

Closed ideals and closed congruences of semirings of $[0,1]$-valued functions with topology of pointwise convergence

E. M. Vechtomov, E. N. Lubyagina

Vyatka State University of Humanities
Full-text PDF (211 kB) Citations (1)
References:
Abstract: For an arbitrary Tychonoff space $X$, we describe closed ideals and closed congruences of the topological semiring $C_p(X,\mathbf I)$ of all continuous functions on $X$ with values in the closed unit interval $\mathbf I$ considered in the topology of pointwise convergence. The duality between the category of Tychonoff spaces $X$ with continuous mappings and the category of topological semirings $C_p(X,\mathbf I)$ with continuous homomorphisms preserving constants is established.
Keywords: semiring, continuous function, Tychonoff topology, closed ideal, closed congruence, duality.
Received: 28.04.2012
Bibliographic databases:
Document Type: Article
UDC: 512.566
Language: Russian
Citation: E. M. Vechtomov, E. N. Lubyagina, “Closed ideals and closed congruences of semirings of $[0,1]$-valued functions with topology of pointwise convergence”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 83–93
Citation in format AMSBIB
\Bibitem{VecLub13}
\by E.~M.~Vechtomov, E.~N.~Lubyagina
\paper Closed ideals and closed congruences of semirings of $[0,1]$-valued functions with topology of pointwise convergence
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 83--93
\mathnet{http://mi.mathnet.ru/timm965}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3362580}
\elib{https://elibrary.ru/item.asp?id=20234974}
Linking options:
  • https://www.mathnet.ru/eng/timm965
  • https://www.mathnet.ru/eng/timm/v19/i3/p83
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :109
    References:81
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024